Neural Network & MLP

Ko Hyejung·2021년 12월 11일
0

NAVER AI TECH - precourse

목록 보기
12/15
post-thumbnail

이번 강의는 이론, 실습, 과제로 구성됩니다.
이번 강의에선 신경망(Neural Networks)의 정의, Deep Neural Networks에 대해 배웁니다.

신경망(Neural Networks)
간단한 Linear neural networks 를 예시로 Data, Model, Loss, Optimization algorithm 을 정의해보는 시간을 가집니다.

Deep Neural Networks
Deep Neural Netowkrs란 무엇이며 Multi-layer perceptron와 같이 더 깊은 네트워크는 어떻게 구성하는지에 대해 배웁니다.

Nerual Networks

Neural networks are computing systems vaguely inspired by the biological neural networks that constitute animal brains

Neural Networks are functoin approximators that stack affine transformatoins followed by nonlinear transformations

Linear Neural Networks

Let's start with the most simple example

We compute the partial derivatives w.r.t the optimizatoin variables

Then, we iteratively update the optimization variables
-> gradient descent

step size가 너무 크거나 0에 가까우면 적절한 학습이 안 됨

of course we can handle multi dimensional input and output

One way of interpreting a matrix is to regard it as a mapping between two vector spaces

Beyond Linear Neural Networks

What if we stack more?

We need nonlinearity

Activation functions

ReLU - Rectified Linear Unit
Sigmoid
Hyperbolic Tangent

Multi-Layer Perceptron

This class of architectures are often called multi-layer perceptrons

Of course, it can go deeper

What about the loss functions?

0개의 댓글