정렬된 두 묶음의 숫자 카드가 있다고 하자. 각 묶음의 카드의 수를 A, B라 하면 보통 두 묶음을 합쳐서 하나로 만드는 데에는 A+B 번의 비교를 해야 한다. 이를테면, 20장의 숫자 카드 묶음과 30장의 숫자 카드 묶음을 합치려면 50번의 비교가 필요하다.
매우 많은 숫자 카드 묶음이 책상 위에 놓여 있다. 이들을 두 묶음씩 골라 서로 합쳐나간다면, 고르는 순서에 따라서 비교 횟수가 매우 달라진다. 예를 들어 10장, 20장, 40장의 묶음이 있다면 10장과 20장을 합친 뒤, 합친 30장 묶음과 40장을 합친다면 (10 + 20) + (30 + 40) = 100번의 비교가 필요하다. 그러나 10장과 40장을 합친 뒤, 합친 50장 묶음과 20장을 합친다면 (10 + 40) + (50 + 20) = 120 번의 비교가 필요하므로 덜 효율적인 방법이다.
N개의 숫자 카드 묶음의 각각의 크기가 주어질 때, 최소한 몇 번의 비교가 필요한지를 구하는 프로그램을 작성하시오.
첫째 줄에 N이 주어진다. (1 ≤ N ≤ 100,000) 이어서 N개의 줄에 걸쳐 숫자 카드 묶음의 각각의 크기가 주어진다. 숫자 카드 묶음의 크기는 1,000보다 작거나 같은 양의 정수이다.
첫째 줄에 최소 비교 횟수를 출력한다.
3
10
20
40
100
import java.io.*;
import java.util.PriorityQueue;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int N = Integer.parseInt(br.readLine());
PriorityQueue<Integer> pq = new PriorityQueue<>();
for (int i = 0; i < N; i++) {
pq.offer(Integer.parseInt(br.readLine()));
}
int sum = 0;
while (pq.size() > 1) {
int i = pq.poll();
int j = pq.poll();
sum = sum + (i + j);
if (!pq.isEmpty()) {
pq.offer(i + j);
}
}
bw.write(String.valueOf(sum));
br.close();
bw.flush();
bw.close();
}
}
Priority Queue
를 써야 한다는 것을 나중에 알아차려서 5번 삽질했다.Priority Queue
가 자주 사용되는 것 같다. 잘 알아두자.