1. data 두개를 concat
def first_df():
data = {"match_all":{}}
sort = {"_id":{"order":"asc"}}
body = {'from':0, 'size':10000,"query":data,"sort":sort}
results = es.search(index='datalake_market_category_matching', body=body)
print(len(results['hits']['hits']))
result = results['hits']['hits']
df = json_normalize(result)
return df
df1 = first_df()
df2 = first_df()
df = pd.concat([df1,df2])
df
2. sql처럼 사용하기
from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
df2 = pysqldf("select product_no, count(*) from df group by product_no order by count(product_no) desc;")
df2
3. 모든 행, 모든 열 보기
- pd.set_option('display.max_rows', None)
- pd.set_option('display.max_columns', None)