recall : 참인 데이터 중에서 참이라고 예측한 데이터의 비율
precision : 참이라고 예측한 데이터에서 실제 참인 데이터의 비율

from sklearn.metrics import (accuracy_score, recall_score,precision_score,f1_score, roc_auc_score, roc_curve)
print(f'acc:{accuracy_score(y_t, y_pred)}')
print(f'recall:{recall_score(y_t, y_pred)}')
print(f'precision:{precision_score(y_t, y_pred)}')
print(f'auc:{roc_auc_score(y_t, y_pred)}')
print(f'f1:{f1_score(y_t, y_pred)}')


import matplotlib.pyplot as plt
%matplotlib inline
pred_proba = wine_tree.predict_proba(x_t)[:,1]
fpr, tpr, thres = roc_curve(y_t, pred_proba)
plt.figure(figsize=(10,8))
plt.plot([0,1],[0,1])
plt.plot(fpr, tpr)
plt.grid()
plt.show()
