로지스틱 회귀분석

hottogi·2022년 11월 4일
0
library(car)
library(lmtest)
library(ROCR)

weather = read.csv("dataset4/weather.csv", stringsAsFactors = F)
dim(weather)
head(weather)
str(weather)

weather_df <- weather[ , c(-1, -6, -8, -14)]
str(weather_df)
weather_df$RainTomorrow[weather_df$RainTomorrow == 'Yes'] <- 1
weather_df$RainTomorrow[weather_df$RainTomorrow == 'No'] <- 0
weather_df$RainTomorrow <- as.numeric(weather_df$RainTomorrow)
head(weather_df)

idx <- sample(1:nrow(weather_df ), nrow(weather_df) * 0.7)
train <- weather_df[idx, ]
test <- weather_df[-idx, ]

weather_model <- glm(RainTomorrow ~ ., data = train, family = 'binomial', na.action=na.omit)
weather_model
summary(weather_model)

pred <- predict(weather_model, newdata = test, type = "response")
pred

result_pred <- ifelse(pred >= 0.5, 1, 0)
result_pred
table(result_pred)

table(result_pred, test$RainTomorrow)

pred[is.na(pred)] <- 0
pr <- prediction(pred, test$RainTomorrow)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
plot(prf)



data(mtcars)
dat <- subset(mtcars, select=c(mpg, am, vs))
dat

log_reg <- glm(vs ~ mpg, data=dat, family="binomial") 
log_reg

summary(log_reg)

profile

0개의 댓글

관련 채용 정보