CLIP 코드 사용법

FSA·2024년 3월 23일
0

vision

목록 보기
3/25
post-custom-banner

CLIP code 사용법

[Blog] [Paper] [Model Card] [Colab]

  • CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs.
  • It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3.

Approach

Usage

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.9927937  0.00421068 0.00299572]]

API

  • The CLIP module clip provides the following methods:

model, preprocess = clip.load(name, device=..., jit=False)

  • Returns the model and the TorchVision transform needed by the model.
  • preprocess (= TorchVision transform )
  • The name argument can also be a path to a local checkpoint.
  • The device to run the model can be optionally specified, and the default is to use the first CUDA device if there is any, otherwise the CPU.
  • When jit is False, a non-JIT version of the model will be loaded.

clip.tokenize(text: Union[str, List[str]], context_length=77)

  • Returns a LongTensor containing tokenized sequences of given text input(s).
  • This can be used as the input to the model.

  • The model returned by clip.load() supports the following methods:

model.encode_image(image: Tensor)

  • Given a batch of images, returns the image features encoded by the vision portion of the CLIP model.

model.encode_text(text: Tensor)

  • Given a batch of text tokens, returns the text features encoded by the language portion of the CLIP model.

model(image: Tensor, text: Tensor)

  • Given a batch of images and a batch of text tokens, returns two Tensors, containing the logit scores corresponding to each image and text input.
  • The values are cosine similarities between the corresponding image and text features, times 100.

More Examples

Zero-Shot Prediction

  • The code below performs zero-shot prediction using CLIP, as shown in Appendix B in the paper.
  • This example takes an image from the CIFAR-100 dataset, and predicts the most likely labels among the 100 textual labels from the dataset.
import os
import clip
import torch
from torchvision.datasets import CIFAR100

# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

# Download the dataset
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

# Prepare the inputs
image, class_id = cifar100[3637]
image_input = preprocess(image).unsqueeze(0).to(device)
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

# Calculate features
with torch.no_grad():
    image_features = model.encode_image(image_input)
    text_features = model.encode_text(text_inputs)

# Pick the top 5 most similar labels for the image
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[0].topk(5)

# Print the result
print("\nTop predictions:\n")
for value, index in zip(values, indices):
    print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")
  • The output will look like the following (the exact numbers may be slightly different depending on the compute device):
Top predictions:

           snake: 65.31%
          turtle: 12.29%
    sweet_pepper: 3.83%
          lizard: 1.88%
       crocodile: 1.75%
  • Note that this example uses the encode_image() and encode_text() methods that return the encoded features of given inputs.

Linear-probe evaluation

  • "Linear probe"는 사전 훈련된 신경망 모델의 특정 층에서 추출된 특징(feature)이 얼마나 유용한지를 평가하는 방법
  • 이 방법은 특히 사전 훈련된 모델의 전이 학습(transfer learning) 능력을 평가할 때 사용됩니다.
  • Linear probe 접근법은 다음과 같은 단계로 구성됩니다:
  1. 특징 추출:
  • 사전 훈련된 모델을 고정(freeze)하고, 모델의 한 층(예: 마지막 컨볼루션 층)에서 출력되는 특징을 데이터셋의 모든 샘플에 대해 추출
  • 이렇게 추출된 특징은 일반적으로 고차원 벡터로 표현
  1. 선형 분류기 훈련:
  • 추출된 특징을 입력으로 사용하여, 간단한 선형 분류기(예: 로지스틱 회귀, 선형 SVM 등)를 훈련
  • 이 분류기는 원래 모델이 훈련되지 않았던 새로운 작업(예: 다른 분류 문제)에 대한 예측을 수행
  1. 성능 평가:
  • 선형 분류기의 성능(예: 정확도, F1 점수 등)을 평가하여, 사전 훈련된 모델에서 추출된 특징의 유용성을 평가
  • 좋은 성능을 달성한다면, 이는 추출된 특징이 해당 작업에 대해 유의미하고 유용한 정보를 포함하고 있음을 의미
  • The example below uses scikit-learn to perform logistic regression on image features.
import os
import clip
import torch

import numpy as np
from sklearn.linear_model import LogisticRegression
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR100
from tqdm import tqdm

# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

# Load the dataset
root = os.path.expanduser("~/.cache")
train = CIFAR100(root, download=True, train=True, transform=preprocess)
test = CIFAR100(root, download=True, train=False, transform=preprocess)


def get_features(dataset):
    all_features = []
    all_labels = []
    
    with torch.no_grad():
        for images, labels in tqdm(DataLoader(dataset, batch_size=100)):
            features = model.encode_image(images.to(device))

            all_features.append(features)
            all_labels.append(labels)

    return torch.cat(all_features).cpu().numpy(), torch.cat(all_labels).cpu().numpy()

# Calculate the image features
train_features, train_labels = get_features(train)
test_features, test_labels = get_features(test)

# Perform logistic regression
classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)
classifier.fit(train_features, train_labels)

# Evaluate using the logistic regression classifier
predictions = classifier.predict(test_features)
accuracy = np.mean((test_labels == predictions).astype(float)) * 100.
print(f"Accuracy = {accuracy:.3f}")

See Also


profile
모든 의사 결정 과정을 지나칠 정도로 모두 기록하고, 나중에 스스로 피드백 하는 것
post-custom-banner

0개의 댓글