Artificial Neural Networks (1)

Hyungseop Lee·2023년 6월 4일
1

[INU, 3-1] Data Science

목록 보기
5/6

Artificial Neural Networks (ANNs)

  • Traditionally most studied model : feedforward neural network

  • Comprises multiple layers of logistic regression models

  • Central idea

    • 주어진 입력으로부터 좋은 feature를 추출해내는 것이 목적.

Representations

Models of a neuron

  • Three basic elements
    1. Synapses (with weights)
    2. Adder (input vector ➡️ scalar)
    3. Activation function (possibly nonlinear)

Activation Function

  • 주로 Sigmoid == Logistic Sigmoid == Logistic 이 주로 사용됨.

ReLU

  • ReLU : Rectified Linear Unit
    σ(s)=max(0,s)\sigma(s) = max(0, s)

    • 어느 순간 역치가 되면, 그 다음 neuron으로 signal이 전달되는 것을 생물학적으로 묘사.
  • ReLU advantages

    • Allows back-propagation of activations and gradients :
      only a small number of units have non-zero values
    • ReLU preserves information about relative intensities as information travels through multiple layers of feature detectors.
    • Better for handling the vanishing gradient problem

Leaky ReLU

  • Leaky ReLU
    : ReLU units can be fragile during training and can "die"
    an attempt to fix the dying ReLU problem

Example 1 : Logical AND

Example 2 : Logical OR

Example 3 : Logical NOT


Network Architectures

Single-layer feedforward network

Example 4 : Logical XNOR

  • XNOR is nonlinear classification
  • But, 여러 개의 Neuron을 사용하여 nonlinear classification을 modeling할 수 있음.

Types of signals in neural networks

  • Each hidden/output neuron performs two tpyes of computations
    1. Function signal
      • Propagates forward through network
      • ww는 고정, Inference만 한다.
    2. Error signals == Back Propagation
      • Propagates backward
      • ww <- w+Δww + \Delta w

Softmax Function

  • Generalization of the logistic function
    : Final layer of a network for multi-class classification

  • Definition : given a K-dimensional vector h=(h1,h2,...,hk)h = (h_1, h_2, ..., h_k)

Numerical expression example

  • 손글씨 0~4 에 대한 input image를 분류하는 Example.
    • Output Layer의 대소 기준 순서를 유지하면서, Normalization.

Three-class example

Function of Hidden Neurons

  • Play critical role in operation of MLP
    • Each layer corresponds to distributed representation
      ➡️ Hidden Layer에서 나오는 vector값들의 의미를 한 번에 알아볼 수 없다.
      node들의 output에 의미들이 분산되어 있음.
  • Hidden neurons acts as feature detecotrs
    • They do so by performing nonlinear transformation on input data into new space called
      feature space

Summary

  • Artificial Neural Network

    • Universal approximator of functions (어떠한 함수든지 ANN이 그럴싸하게 근접할 수 있다.)
    • Neuron model
      1. weight
      2. adder
      3. activation function
  • Two types of signals for training feed-forward MLP

    1. function signals : forward propagation
    2. error signals : backward propagation
  • Hidden Layers act as feature detectors

    • hidden layers ⬆️, intelligence ⬆️ but training difficulty ⬆️
profile
model compression

0개의 댓글