Sorting Algorithms | Time Complexity, Recurrence relation

Bubble Sort
Recurrence Relation
T(n)=T(n−1)+Θ(n)

Insertion Sort
Recurrence Relation
Worst
T(n)=T(n−1)+Θ(n)
Best
T(n)=T(n−1)+Θ(1)

Selection Sort
Recurrence Relation
All Case
T(n)=T(n−1)+Θ(n)

Merge Sort
Recurrence Relation
All Case
T(n)=2T(2n)+Θ(n)

Heap Sort
Recurrence Relation
All Case
T(n)=T(n−1)+Θ(logn)

Quick Sort
Recurrence Relation
Average / Best
T(n)=2T(2n)+Θ(n)

Worst
T(n)=T(n−1)+Θ(n)

