[BOJ] 1939 중량제한 바로가기
N(2 ≤ N ≤ 10,000)개의 섬으로 이루어진 나라가 있다. 이들 중 몇 개의 섬 사이에는 다리가 설치되어 있어서 차들이 다닐 수 있다.
영식 중공업에서는 두 개의 섬에 공장을 세워 두고 물품을 생산하는 일을 하고 있다. 물품을 생산하다 보면 공장에서 다른 공장으로 생산 중이던 물품을 수송해야 할 일이 생기곤 한다. 그런데 각각의 다리마다 중량제한이 있기 때문에 무턱대고 물품을 옮길 순 없다. 만약 중량제한을 초과하는 양의 물품이 다리를 지나게 되면 다리가 무너지게 된다.
한 번의 이동에서 옮길 수 있는 물품들의 중량의 최댓값을 구하는 프로그램을 작성하시오.
첫째 줄에 N, M(1 ≤ M ≤ 100,000)이 주어진다. 다음 M개의 줄에는 다리에 대한 정보를 나타내는 세 정수 A, B(1 ≤ A, B ≤ N), C(1 ≤ C ≤ 1,000,000,000)가 주어진다. 이는 A번 섬과 B번 섬 사이에 중량제한이 C인 다리가 존재한다는 의미이다. 서로 같은 두 섬 사이에 여러 개의 다리가 있을 수도 있으며, 모든 다리는 양방향이다. 마지막 줄에는 공장이 위치해 있는 섬의 번호를 나타내는 서로 다른 두 정수가 주어진다. 공장이 있는 두 섬을 연결하는 경로는 항상 존재하는 데이터만 입력으로 주어진다.
첫째 줄에 답을 출력한다.
# pypy3
from sys import stdin
from collections import deque, defaultdict
def solution(N, edges, arrival, departure):
answer = [-1] * (N+1)
answer[arrival] = 0
graph = defaultdict(lambda : defaultdict(int)) # graph[시작점][도착점] = 중량
# 두 개의 섬(s, e) 사이의 중량 제한 갱신
for s, e, w in edges:
weight = max(graph[s][e], w)
graph[s][e] = weight
graph[e][s] = weight
# 시작섬(arrival)에서 다른 직접 연결된 섬의 중량 제한 갱신
queue = deque()
for node in graph[arrival]:
answer[node] = graph[arrival][node]
queue.append(node)
# 다익스트라
while queue:
currentNode = queue.popleft()
# 현재 섬(currentNode)이 도착섬(departure)일 경우
if currentNode == departure:
continue
for nextNode in graph[currentNode]:
# 다음 섬(nextNode)의 중량 제한 갱신이 가능한 경우
if answer[nextNode] < min(answer[currentNode], graph[currentNode][nextNode]):
answer[nextNode] = min(answer[currentNode], graph[currentNode][nextNode])
queue.append(nextNode)
return answer[departure]
# input
N, M = map(int,stdin.readline().split())
edges = [list(map(int,stdin.readline().split())) for _ in range(M)]
arrival, departure = map(int,stdin.readline().split())
# result
result = solution(N, edges, arrival, departure)
print(result)