Ax=bA \textbf{x} = \textbf{b}Ax=b A−1Ax=A−1bA^{-1} A \textbf{x} = A^{-1} \textbf{b}A−1Ax=A−1b Inx=A−1bI_n \textbf{x} = A^{-1} \textbf{b}Inx=A−1b x=A−1b\textbf{x} = A^{-1} \textbf{b}x=A−1b
e.g. Ax=bA \textbf{x} = \textbf{b}Ax=b where A=[221310131]A = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix}A=⎣⎢⎡231213101⎦⎥⎤, x=[x1x2x3]\textbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}x=⎣⎢⎡x1x2x3⎦⎥⎤, b=[61418]\textbf{b} = \begin{bmatrix} 6 \\ 14 \\ 18 \end{bmatrix}b=⎣⎢⎡61418⎦⎥⎤ A−1=[0.250.25−0.25−0.750.250.752−1−1]A^{-1} = \begin{bmatrix} 0.25 & 0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 2 & -1 & -1 \\ \end{bmatrix}A−1=⎣⎢⎡0.25−0.7520.250.25−1−0.250.75−1⎦⎥⎤ x=A−1b=[0.250.25−0.25−0.750.250.752−1−1][61418]=[0.512.5−5]\textbf{x} = A^{-1} \textbf{b} = \begin{bmatrix} 0.25 & 0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 2 & -1 & -1 \\ \end{bmatrix}\begin{bmatrix} 6 \\ 14 \\ 18 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 12.5 \\ -5 \end{bmatrix}x=A−1b=⎣⎢⎡0.25−0.7520.250.25−1−0.250.75−1⎦⎥⎤⎣⎢⎡61418⎦⎥⎤=⎣⎢⎡0.512.5−5⎦⎥⎤
e.g.
Ax=bA \textbf{x} = \textbf{b}Ax=b
where A=[221310131]A = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix}A=⎣⎢⎡231213101⎦⎥⎤, x=[x1x2x3]\textbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}x=⎣⎢⎡x1x2x3⎦⎥⎤, b=[61418]\textbf{b} = \begin{bmatrix} 6 \\ 14 \\ 18 \end{bmatrix}b=⎣⎢⎡61418⎦⎥⎤
A−1=[0.250.25−0.25−0.750.250.752−1−1]A^{-1} = \begin{bmatrix} 0.25 & 0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 2 & -1 & -1 \\ \end{bmatrix}A−1=⎣⎢⎡0.25−0.7520.250.25−1−0.250.75−1⎦⎥⎤
x=A−1b=[0.250.25−0.25−0.750.250.752−1−1][61418]=[0.512.5−5]\textbf{x} = A^{-1} \textbf{b} = \begin{bmatrix} 0.25 & 0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 2 & -1 & -1 \\ \end{bmatrix}\begin{bmatrix} 6 \\ 14 \\ 18 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 12.5 \\ -5 \end{bmatrix}x=A−1b=⎣⎢⎡0.25−0.7520.250.25−1−0.250.75−1⎦⎥⎤⎣⎢⎡61418⎦⎥⎤=⎣⎢⎡0.512.5−5⎦⎥⎤