[Linear Algebra] Orthogonal to QR Factorization

Jason Lee·2022년 12월 27일
0

Linear Algebra

목록 보기
26/26
post-custom-banner

Orthogonal and Orthonormal Sets

  • Definition: A set of vectors {u1,,up}\begin{Bmatrix} \textbf{u}_1, \cdots, \textbf{u}_p \end{Bmatrix} in Rn\mathbb{R}^n is an orthogonal set
    if each pair of distinct vectors from the set is orthogonal
    That is, if uiuj=0\textbf{u}_i \cdot \textbf{u}_j = 0 whenever iji \neq j
  • Definition : A set of vectors {u1,,up}\begin{Bmatrix} \textbf{u}_1, \cdots, \textbf{u}_p \end{Bmatrix} in Rn\mathbb{R}^n is an orthonormal set
    if it is an orthogonal set of unit vectors
  • Orthogonal or orthonormal set is also linearly independent, but not vice versa

Orthogonal Projection Perspective

  • Consider the orthogonal projection b\textbf{b} onto ColA\textrm{Col} A as
    b^=f(b)=Ax^=A(ATA)1ATb=Cb\hat{\textbf{b}} = f(\textbf{b}) = A\hat{\textbf{x}} = A(A^T A)^{-1} A^T \textbf{b} = C \textbf{b}
    where C=A(ATA)1ATC = A(A^T A)^{-1} A^T
  • We can see that the orthogonal projection is actually a linear transformation f(b)=Cbf(\textbf{b}) = C\textbf{b}
    where the standard matrix is defined as C=A(ATA)1ATC = A(A^T A)^{-1} A^T
  • If AA is orthonormal, ATA=[a1Ta2TanT][a1a2an]=IA^T A = \begin{bmatrix} \textbf{a}_1^T \\ \textbf{a}_2^T \\ \vdots \\ \textbf{a}_n^T \end{bmatrix} \begin{bmatrix} \textbf{a}_1 & \textbf{a}_2 & \cdots & \textbf{a}_n \\ \end{bmatrix} = I
    Thus b^=Ax^=A(ATA)1ATb=AATb=Cb\hat{\textbf{b}} = A\hat{\textbf{x}} = A(A^T A)^{-1} A^T \textbf{b} = A A^T \textbf{b} = C \textbf{b}

Gram-Schmidt Orthogonalization

  • Using Gram-Schmidt orthogonalization, we can make any basis to orthogonal or orthonormal basis

QR Factorization

  • If AA is an m×nm \times n matrix with linearly independent columns,
    then AA can be factored as A=QRA = QR
    where QQ is an m×nm \times n matrix whose columns form an orthonormal basis for ColA\textrm{Col} A
    and RR is an n×nn \times n upper triangular invertible matrix with positive entries on its diagonal
  • Using Gram–Schmidt orthogonalization, we can do QR factorization
profile
AI Researcher
post-custom-banner

0개의 댓글