[Linear Algebra] Vector Matrix Multiplication

Jason Lee·2022년 8월 4일
0

Linear Algebra

목록 보기
2/26
post-custom-banner

Vector / Matrix Additions and Multiplications

  • Element-wise addition : C=A+BC = A + B, Cij=Aij+BijC_{ij} = A_{ij} + B_{ij}
    • A, B, C should have the same size : A,B,CRm×nA, B, C \in \mathbb{R}^{m \times n}
  • Scalar multiple of vector/matrix : cac\textbf{a}, cAcA
  • Matrix-matrix multiplication : C=ABC = AB, Cij=kAi,kBk,jC_{ij} = \sum_{k} A_{i,k} B_{k,j}
    • constraint : AR?×n,BRn×?A \in \mathbb{R}^{? \times n}, B \in \mathbb{R}^{n \times ?}

Matrix Multiplication is NOT commutative

  • Matrix multiplication is NOT commutative : ABBAAB \neq BA

Other Properties

  • Distributive : A(B+C)=AB+ACA(B+C) = AB + AC
  • Associative : A(BC)=(AB)CA(BC) = (AB)C
  • Property of transpose : (AB)T=BTAT(AB)^T = B^T A^T
profile
AI Researcher
post-custom-banner

0개의 댓글