파라미터(Parameter)는 모델 내부에서 결정되는 변수이다. 값은 데이터로부터 결정된다.
A model parameter is a configuration variable that is internal to the model and whose value can be estimated from data.
- They are required by the model when making predictions.
- They values define the skill of the model on your problem.
- They are estimated or learned from data.
- They are often not set manually by the practitioner.
- They are often saved as part of the learned model.
하이퍼 파라미터는 모델링할 때, 사용자가 직접 세팅해주는 값이다. (e.g. learning rate) 하이퍼 파라미터는 정해진 최적의 값이 없기 때문에, 휴리스틱하게 결정하는 경우가 많다.
A model hyper-parameter is a configuration that is external to the model and whose value cannot be estimated from data.
- They are often used in processes to help estimate model parameters.
- They are often specified by the practitioner.
- They can often be set using heuristics.
- They are often tuned for a given predictive modeling problem.
파라미터와 하이퍼 파라미터를 구분하는 기준은 사용자가 직접 설정하는지 아닌지이다.