버블 정렬
O(n^2)
def bubble_sort(arr):
for i in range(len(arr) - 1, 0, -1):
for j in range(i):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
선택 정렬
O(n^2)
def selection_sort(arr):
for i in range(len(arr) - 1):
min_idx = i
for j in range(i + 1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
삽입 정렬
O(n^2)
def insertion_sort(arr):
for end in range(1, len(arr)):
i = end
while i > 0 and arr[i - 1] > arr[i]:
arr[i - 1], arr[i] = arr[i], arr[i - 1]
i -= 1
O(n^2)
병합 정렬
O(nlogn)
병합 정렬
def merge_sort(arr):
def sort(low, high):
if high - low < 2:
return
mid = (low + high) // 2
sort(low, mid)
sort(mid, high)
merge(low, mid, high)
def merge(low, mid, high):
temp = []
l, h = low, mid
while l < mid and h < high:
if arr[l] < arr[h]:
temp.append(arr[l])
l += 1
else:
temp.append(arr[h])
h += 1
while l < mid:
temp.append(arr[l])
l += 1
while h < high:
temp.append(arr[h])
h += 1
for i in range(low, high):
arr[i] = temp[i - low]
return sort(0, len(arr))
힙 정렬
O(nlogn)
퀵 정렬
O(nlogn)
단, 피벗을 어떻게 잡느냐가 시간 복잡도에 가장 큰 영향을 미침
퀵 정렬 예시
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
lesser_arr, equal_arr, greater_arr = [], [], []
for num in arr:
if num < pivot:
lesser_arr.append(num)
elif num > pivot:
greater_arr.append(num)
else:
equal_arr.append(num)
return quick_sort(lesser_arr) + equal_arr + quick_sort(greater_arr)
시간 복잡도
참고