INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수 및 간선의 개수를 입력받기
n, m = map(int, input().split())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]
# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
for b in range(1, n + 1):
if a == b:
graph[a][b] = 0
# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
# A와 B가 서로에게 가는 비용은 1이라고 설정
a, b = map(int, input().split())
graph[a][b] = 1
graph[b][a] = 1
# 거쳐 갈 노드 X와 최종 목적지 노드 K를 입력받기
x, k = map(int, input().split())
# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
for a in range(1, n + 1):
for b in range(1, n + 1):
graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])
# 수행된 결과를 출력
distance = graph[1][k] + graph[k][x]
# 도달할 수 없는 경우, -1을 출력
if distance >= 1e9:
print("-1")
# 도달할 수 있다면, 최단 거리를 출력
else:
print(distance)
전형적인 플로이드 워셜 알고리즘 문제이다. 현재 문제에서 N의 범위가 100 이하로 매우 한정적이다. 따라서 플로이드 워셜 알고리즘을 이용해도 빠르게 풀 수 있기 때문에, 구현이 간단한 플로이드 워셜 알고리즘을 이용하는 것이 유리하다.
이 문제의 핵심 아이디어는 1번 노드에서 X를 거쳐 K로 가는 최단거리는 (1번 노드에서 X까지의 최단거리 + X에서 K까지의 최단거리)라는 점이다.
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수, 시작 노드를 입력받기
n, m, start = map(int, input().split())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
x, y, z = map(int, input().split())
# X번 노드에서 Y번 노드로 가는 비용이 Z라는 의미
graph[x].append((y, z))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
dist, now = heapq.heappop(q)
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 도달할 수 있는 노드의 개수
count = 0
# 도달할 수 있는 노드 중에서, 가장 멀리 있는 노드와의 최단 거리
max_distance = 0
for d in distance:
# 도달할 수 있는 노드인 경우
if d != 1e9:
count += 1
max_distance = max(max_distance, d)
# 시작 노드는 제외해야 하므로 count - 1을 출력
print(count - 1, max_distance)
한 도시에서 다른 도시까지의 최단 거리 문제로 치환할 수 있으므로 다익스트라 알고리즘을 이용해서 풀 수 있다. 또한 N과 M의 범위가 충분히 크기 때문에, 우선순위 큐를 이용하여 다익스트라 알고리즘을 작성해야 한다. 결과적으로 앞서 다루었던 다익스트라 알고리즘의 소스코드에서 마지막 부분만 조금 수정하여 답안 코드를 만들 수 있다.
모든 내용은 '이것이 코딩 테스트다 with 파이썬(나동빈)' 책과 유튜브 강의를 기반으로 작성한 글입니다.