Vggnet 구현

·2022년 8월 24일
0

라이브러리 import, CIFAR10 다운



from __future__ import print_function

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_set = torchvision.datasets.CIFAR10('./datasets', train=True, 
                                         download=True, transform=transform)
test_set = torchvision.datasets.CIFAR10('./datasets', train=False, 
                                        download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, 
                                           shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=100, 
                                          shuffle=False, num_workers=4)

classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

VGG 모델 구현



cfg = {
    'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

class VGG(nn.Module):
    
    def __init__(self, vgg_name):
        super(VGG, self).__init__()
        self.features = self._make_layers(cfg[vgg_name])
        self.classifier = nn.Linear(512, 10)
        self._initialize_weight()
        
    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out
    
    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)
    
    def _initialize_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # xavier is used in VGG's paper
                nn.init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()
model = VGG('VGG16').to(device)
print(model)
if device == 'cuda':
    model = nn.DataParallel(model)

    torch.backends.cudnn.benchmark = True

VGG 16 으로 training

Training, Test 과정 수정 전 Acc : 90%


# Training
def train(epoch):
    print('\nEpoch: %d' % (epoch + 1))
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()
        if batch_idx % 100 == 99:    # print every 100 mini-batches
            print('[%d, %5d] loss: %.5f |  Acc: %.3f%% (%d/%d)' %
                  (epoch + 1, batch_idx + 1, train_loss / 2000, 100.*correct/total, correct, total))
            train_loss = 0.0
            total = 0
            correct = 0
            
load_model = True
start_epoch = 0
print('start_epoch: %s' % start_epoch)
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

training 진행 후 test data로 acc 측정

Training, Test 과정 수정 후 Acc : 92%


for epoch in range(num_epoch):
    print(f"====== { epoch+1} epoch of { num_epoch } ======")
    model.train()
    #scheduler2.step()
    lr_scheduler(optimizer, epoch)
    train_loss = 0
    valid_loss = 0
    correct = 0
    total_cnt = 0
    # Train Phase
    for step, batch in enumerate(train_loader):
        #  input and target
        batch[0], batch[1] = batch[0].to(device), batch[1].to(device)
        optimizer.zero_grad()
        
        logits = model(batch[0])
        loss = loss_fn(logits, batch[1])
        loss.backward()
        
        optimizer.step()
        train_loss += loss.item()
        _, predict = logits.max(1)
        
        total_cnt += batch[1].size(0)
        correct +=  predict.eq(batch[1]).sum().item()
        
        if step % 100 == 0 and step != 0:
            print(f"\n====== { step } Step of { len(train_loader) } ======")
            print(f"Train Acc : { correct / total_cnt }")
            print(f"Train Loss : { loss.item() / batch[1].size(0) }")
            
    correct = 0
    total_cnt = 0
    
# Test Phase
    with torch.no_grad():
        model.eval()
        for step, batch in enumerate(test_loader):
            # input and target
            batch[0], batch[1] = batch[0].to(device), batch[1].to(device)
            total_cnt += batch[1].size(0)
            logits = model(batch[0])
            valid_loss += loss_fn(logits, batch[1])
            _, predict = logits.max(1)
            correct += predict.eq(batch[1]).sum().item()
        valid_acc = correct / total_cnt
        print(f"\nValid Acc : { valid_acc }")    
        print(f"Valid Loss : { valid_loss / total_cnt }")

        if(valid_acc > best_acc):
            best_acc = valid_acc
            torch.save(model, model_name)
            print("Model Saved!")

   
    if epoch % 1 == 0:    # 매 10 iteration마다 업데이트
	    # writer.add_scalar('train_loss', loss.item() / batch[1].size(0), epoch)
      
      writer.add_scalar('test_loss', valid_loss / total_cnt, epoch)
    writer.add_scalar('train_acc', correct / total_cnt, epoch)
    writer.add_scalar('test_acc', valid_acc, epoch)    

writer.close

best acc 일때 model save

0개의 댓글