Random Vector

Rainy Night for Sapientia·2023년 11월 4일

Mathematics for AI

목록 보기
2/3

Random variable

  • Random variable is a variable of which values depend on outcomes of a random phenomenon
  • Formally, it is a measurable function defined on a probabiltiy space that maps from the sample space to the real numbers; probabilty for discrete variables or density for continous variables.
  • Random vector refers to multi-dimensional generalisation of the concept of random variable; a vector of which elements are random variables.
  • In general, a random vector can be described with measures similar to those defined for scalar random variables.

Multivariate Statistics

For a random vector of d random variables, χ=(χ1,χ2,χ3,...,χd)\chi = ( \chi_1, \chi_2, \chi_3, ..., \chi_d), a sample of X that has N points is X=(Xij)d×NX = (X_{ij})_{d \times N}.
We can call this matrix have dd features and NN examples.

  • Mean Vector (empirical)

    m=[m1m2m3...md]=[1Nn=1NX1n1Nn=1NX2n1Nn=1NX3n...1Nn=1NXdn]=1Nn=1Nxnwherexn=[X1nX2nX3n...Xdn],n=1,2,3,...n\mathbf{m} = \begin{bmatrix} m_1\\ m_2\\ m_3\\ ...\\ m_d \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{n=1}^N X_{1n}\\ \frac{1}{N} \sum_{n=1}^N X_{2n}\\ \frac{1}{N} \sum_{n=1}^N X_{3n}\\ ...\\ \frac{1}{N} \sum_{n=1}^N X_{dn} \\ \end{bmatrix} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_{n} \:\:\text{where} \: \mathbf{x}_{n} = \begin{bmatrix} X_{1n}\\ X_{2n}\\ X_{3n}\\ ...\\ X_{dn} \\ \end{bmatrix}, n = 1,2,3,... n
  • Covariance Matrix (empirical)

    Sd×d=[C11C12...C1dC21C22...C2dC31C32...C3d...Cd1Cd2...Cdd]S_{d \times d} = \begin{bmatrix} C_{11} & C_{12} & ... &C{1d}\\ C_{21} & C_{22} & ... &C{2d}\\ C_{31} & C_{32} & ... &C{3d}\\ ...\\ C_{d1} & C_{d2} & ... &C{dd} \end{bmatrix}
    Cij={1N1n=1N(Xinmi)(Xjnmj) if ij1N1n=1N(Xinmi)2Σ2 if i=jC_{ij} = \begin{cases} \frac{1}{N-1} \sum_{n=1}^{N}(X_{in} - m_i) (X_{jn} - m_j) & \text{ if } i \neq j\\ \frac{1}{N-1} \sum_{n=1}^{N}(X_{in} - m_i)^2\leftrightarrow \Sigma^2 &\text{ if } i = j \end{cases}
  • The covariance elements can be expressed by Cik=ρikΣiΣkC_{ik} = \rho_{ik} \Sigma_i \Sigma_k (Sigma is sd), where ρ\rho is the correlation coefficient.

  • Thus the covariance has several important properties as follows:

    • If Cik>0C_{ik} > 0, Xi\Chi_i and Xk\Chi_k tend to increase together
    • If Cik<0C_{ik} < 0, Xi\Chi_i tends to increase when Xk\Chi_k tend to decrease
    • If Cik=0C_{ik} = 0, Xi\Chi_i and Xk\Chi_k are uncorrelated
      (but it means not! they are independent. they could be linearly non-dependent but they could be dependent as non-linearly)
    • 1ρ1-1 \leq \rho \leq 1 hence CikΣiΣk|C_{ik}| \leq \Sigma_i\Sigma_k

profile
Artificial Intelligence study note

0개의 댓글