profile
a Philosopher aspiring to become an AI/ML/DL Engineer and Data Scientist.
post-thumbnail

Logistic Regression

Objective: Study/observe the relationship between categories of the preexisting data in order to evaluate/predict new data into proper categories. Dif

2022년 6월 16일
·
0개의 댓글
post-thumbnail

Ridge Regression

Cross-Validation: Compares various forms/types of Machine Learning methods and gives insight regarding its actual performance. In Machine Learning,Est

2022년 6월 14일
·
0개의 댓글

Encoding/Feature Selection

One-Hot Encoding Categorical/Qualitative Data: Nominal -- has no order Ordinal -- has order One-Hot Encoding is encoding the categorical/qualitative

2022년 6월 13일
·
0개의 댓글
post-thumbnail

Multiple Linear Regression

Main Purpose: Building a model that accurately predicts the test data (as opposed to the train data)Train/Test SplitTrain Data - used to train the mod

2022년 4월 19일
·
0개의 댓글

Simple Linear Regression

Reference ModelA prototype model that displays the most basic performance that becomes a reference for the prediction modelTypes: \- Classification =

2022년 4월 14일
·
0개의 댓글

Feature Engineering

Feature = Column or a Dimension of a DataFrameFeature Engineering = Combining/Restructuring the existing datasets to create a new featureScreen Shot 2

2022년 4월 13일
·
0개의 댓글

Exploratory Data Analysis

A process of reordering and restructuring data in a manner that is fit for analysis. An essential process that helps the user understand the data he/s

2022년 4월 4일
·
0개의 댓글