행렬식(determinant)

박재한·2022년 1월 13일
0

수학(mathematics)

목록 보기
1/7

1. 행렬식의 주요성질

참고1
참고2

  • det(AB) = det(A)det(B)\textbf{det(AB) = det(A)det(B)}
    A가 n×nn\times n 정방행렬이고 역행렬이 존재하는 가역행렬일때, 행렬 A는 기본행렬(elementary matrix)의 곱으로 표현할 수 있다. 즉 A=EmEm1...E1A=E_mE_{m-1}...E_1이다.
    det(AB)=det(EmEm1...E1B)=det(Em)det(Em1)...det(E1)det(B)=det(EmEm1...E1)det(B)=det(A)det(B)det(AB)\\=det(E_mE_{m-1}...E_1B)\\=det(E_m)det(E_{m-1})...det(E_1)det(B)\\=det(E_mE_{m-1}...E_1)det(B)\\=det(A)det(B)
    (기본행렬의 곱의 예)
    [3001][1071][1101][1004/3]=[3478]\begin{bmatrix} 3 & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix}1 & 0 \\ 7 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4/3 \\ \end{bmatrix} =\begin{bmatrix}3 & -4 \\ 7 & -8 \\ \end{bmatrix}

  • det(AT)=det(A)\mathbf{det(A^T)=det(A)}

  • det(A1)=1det(A)\mathbf{det(A^{-1})=\frac{1}{det(A)}}
    I=AA1I=AA^{-1}
    det(I)=det(AA1)det(I)=det(AA^{-1})
    1=det(A)det(A1)1=det(A)det(A^{-1})
    det(A1)=1det(A)det(A^{-1})=\frac{1}{det(A)}

  • det(PAP1)=det(A)\mathbf{det(PAP^{-1})=det(A)}
    det(PAP1)=det(P)det(A)det(P1)=det(P)det(A)1det(P)=det(A)det(PAP^{-1})=det(P)det(A)det(P^{-1})\\ =det(P)det(A)\frac{1}{det(P)}\\ =det(A)

  • det(cA)=cndet(A),  A  n×n  정방행렬\mathbf{det(cA)=c^ndet(A)},\;A는\; n\times n \;정방행렬
    det(cA)=det(cInA)=det(cIn)det(A)det(cA)=det(cI_nA)=det(cI_n)det(A) \rightarrow 앞에서 증명
    =det([c0...00c...0............000c])det(A)=det\left (\begin{bmatrix} c &0 &... &0 \\ 0 &c &... &0 \\ ... &... &... &... \\ 0 &0 &0 &c \\ \end{bmatrix}\right ) det(A)
    =cndet(A)=c^ndet(A)
    \rightarrow 대각행렬(diagonal matrix)의 determinant 증명은 바로 이어서 나옴

  • det(diag(a11,...,ann))=det([a110...00a22...0............000ann])=a11a22...ann\mathbf{det(diag(a_{11},...,a_{nn}))} \\ =\mathbf{ det \left ( \begin{bmatrix} a_{11} &0 &... &0 \\ 0 &a_{22} &... &0 \\ ... &... &... &... \\ 0 &0 &0 &a_{nn} \\ \end{bmatrix} \right )=a_{11}a_{22}...a_{nn} }
    det([a110...00a22...0............000ann])=(1)1+1a11det([a220...00a33...0............000ann])=a11(1)2+2a22det([a330...00a44...0............000ann])...=a11a22...(1)n2+n2an2n2det([an1n100ann])=a11a22...an2n2an1n1anndet \left ( \begin{bmatrix} a_{11} &0 &... &0 \\ 0 &a_{22} &... &0 \\ ... &... &... &... \\ 0 &0 &0 &a_{nn} \\ \end{bmatrix} \right ) =(-1)^{1+1}a_{11} \cdot det \left ( \begin{bmatrix} a_{22} &0 &... &0 \\ 0 &a_{33} &... &0 \\ ... &... &... &... \\ 0 &0 &0 &a_{nn} \\ \end{bmatrix} \right ) \\ = a_{11}\cdot(-1)^{2+2}a_{22} \cdot det \left ( \begin{bmatrix} a_{33} &0 &... &0 \\ 0 &a_{44} &... &0 \\ ... &... &... &... \\ 0 &0 &0 &a_{nn} \\ \end{bmatrix} \right ) \\ ...\\ = a_{11}a_{22}...(-1)^{n-2+n-2}a_{n-2n-2} \cdot det \left ( \begin{bmatrix} a_{n-1n-1} &0 \\ 0 &a_{nn} \\ \end{bmatrix} \right ) \\ =a_{11}a_{22}...a_{n-2n-2}a_{n-1n-1}a_{nn}

  • det([a11...0......an1...ann])=a11a22...ann\mathbf{ det\left ( \begin{bmatrix} a_{11} &... &0 \\ ... &\ddots &... \\ a_{n1} &... &a_{nn} \\ \end{bmatrix} \right ) = a_{11}a_{22}...a_{nn} }
    삼각행렬(triangular matrix)의 행렬식(determinant)도 대각 원소들의 곱인데, 앞의 대각행렬(diagonal matrix)과 거의 유사하게 증명이 된다.(상삼각 행렬, 하삼각 행렬 모두 동일하게 적용이 된다.)

profile
바쁘게 부지런하게 논리적으로 살자!!!

0개의 댓글