import java.util.*;
class Node {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수는 최대 100,000개라고 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 방문한 적이 있는지 체크하는 목적의 배열 만들기
public static boolean[] visited = new boolean[100001];
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
// 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
public static int getSmallestNode() {
int min_value = INF;
int index = 0; // 가장 최단 거리가 짧은 노드(인덱스)
for (int i = 1; i <= n; i++) {
if (d[i] < min_value && !visited[i]) {
min_value = d[i];
index = i;
}
}
return index;
}
public static void dijkstra(int start) {
// 시작 노드에 대해서 초기화
d[start] = 0;
visited[start] = true;
for (int j = 0; j < graph.get(start).size(); j++) {
d[graph.get(start).get(j).getIndex()] = graph.get(start).get(j).getDistance();
}
// 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for (int i = 0; i < n - 1; i++) {
// 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
int now = getSmallestNode();
visited[now] = true;
// 현재 노드와 연결된 다른 노드를 확인
for (int j = 0; j < graph.get(now).size(); j++) {
int cost = d[now] + graph.get(now).get(j).getDistance();
// 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(j).getIndex()]) {
d[graph.get(now).get(j).getIndex()] = cost;
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 있는 경우 거리를 출력
else {
System.out.println(d[i]);
}
}
}
}
import java.util.*;
class Node implements Comparable<Node> {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
// 거리(비용)가 짧은 것이 높은 우선순위를 가지도록 설정
@Override
public int compareTo(Node other) {
return Integer.compare(this.distance, other.distance);
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수는 최대 100,000개라고 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
public static void dijkstra(int start) {
PriorityQueue<Node> pq = new PriorityQueue<>();
// 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
pq.offer(new Node(start, 0));
d[start] = 0;
while(!pq.isEmpty()) { // 큐가 비어있지 않다면
// 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
Node node = pq.poll();
int dist = node.getDistance(); // 현재 노드까지의 비용
int now = node.getIndex(); // 현재 노드
// 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if (d[now] < dist) continue;
// 현재 노드와 연결된 다른 인접한 노드들을 확인
for (int i = 0; i < graph.get(now).size(); i++) {
int cost = d[now] + graph.get(now).get(i).getDistance();
// 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(i).getIndex()]) {
d[graph.get(now).get(i).getIndex()] = cost;
pq.offer(new Node(graph.get(now).get(i).getIndex(), cost));
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 있는 경우 거리를 출력
else {
System.out.println(d[i]);
}
}
}
}
K
를 거치거나, 거치지 않는 경로 중 하나A
와 정점 B
사이의 최단 경로는 A → B → K
이거나 A → K
임K
를 거친다면 최단 경로를 이루는 부분 경로 역시 최단 경로이다.A → B
의 최단 경로가 A → K → B
라면 A → K
와 K → B
도 각각 최단 경로이다.A 에서 B 로 가는 최소 비용 과 A 에서 K 를 거쳐 B 로 가는 비용을 비교하여 더 작은 값으로 갱신
import java.util.*;
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
// 노드의 개수(N), 간선의 개수(M)
// 노드의 개수는 최대 500개라고 가정
public static int n, m;
// 2차원 배열(그래프 표현)를 만들기
public static int[][] graph = new int[501][501];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
// 최단 거리 테이블을 모두 무한으로 초기화
for (int i = 0; i < 501; i++) {
Arrays.fill(graph[i], INF);
}
// 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
if (a == b) graph[a][b] = 0;
}
}
// 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for (int i = 0; i < m; i++) {
// A에서 B로 가는 비용은 C라고 설정
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
graph[a][b] = c;
}
// 점화식에 따라 플로이드 워셜 알고리즘을 수행
for (int k = 1; k <= n; k++) {
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
graph[a][b] = Math.min(graph[a][b], graph[a][k] + graph[k][b]);
}
}
}
// 수행된 결과를 출력
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
// 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if (graph[a][b] == INF) {
System.out.print("INFINITY ");
}
// 도달할 수 있는 경우 거리를 출력
else {
System.out.print(graph[a][b] + " ");
}
}
System.out.println();
}
}
}