DFS & BFS

JeongChaeJin·2022년 10월 6일
0
post-custom-banner
  • Search : 많은양의 데이터 중 원하는 데이터 찾는 과정
  • 반드시 숙지해야하는 유형

Stack

  • First In Last Out

Queue

  • First In First Out

Example

from collections import deque

q = deque()

x = 5
q.append(x) # push_back
q.popleft() # pop_left

q.reverse() # 역순 바꾸기
  • python에서 deque을 이용한 queue 구현이 더 빠르게 동작

재귀 함수 (Recursive Function)

  • 자기 자신을 다시 호출하는 함수
  • 최대 재귀 깊이 초과 시 Error Message 발생
    • stack 방식으로 fucntion이 할당되어 처리됨
    • while, for 없이도 반복이 가능
  • 종료 조건
    • 반드시 재귀 함수의 종료 조건을 명시해야된다.
    • 종료 조건을 제대로 명시하지 않을 시 무한히 호출될 수 있다.

Example - Factorial

def factorial_recursive(n):
	if n <= 1:
    	return
        
	return n * factorial_recursive(n - 1)
  • 연산이 수학적으로 정의된 경우 코드가 더 간결해진다.

Example - 유클리드 호제법

  • 두 개 자연수에 대한 최대 공약수를 구하는 대표적 알고리즘
  • 두 자연수 A, B에 대해(A>B) A를 B로 나눈 나머지를 R이라고하면 A와 B의 최대 공약수는 B와 R의 최대 공약수와 같다.
  • GCD(192 , 162)
    • 162 , 30 의 최대 공약수를 구하는 문제로 변경
    • 30, 12 의 최대 공약수를 구하는 문제로 변경
    • 12, 6 의 최대 공약수를 구하는 문제로 변경
def gcd(a, b):
	if a % b == 0:
    	return b
    else:
    	return gcd(b, a % b)
  • 재귀 함수 잘 활용 시 복잡한 알고리즘을 간결하게 작성 가능
  • 컴퓨터 함수를 연속적으로 호출 시 메모리 내부 스택 프레임에 쌓이므로 스택을 사용해야할 때 재귀함수를 이용하는 경우가 많다.
    • 반복문보다 불리한 경우도 있다.

DFS (Depth-First Search)

  • 깊이 우선 탐색
  • Stack 자료 구조 또는 재귀함수를 이용한다.
    • 탐색 시작 노드를 스택에 삽입 후 방문 처리
    • 최상단 노드에 방문하지 않은 인접 노드가 하나라도 있으면 그 노드를 스택에 넣고 방문 처리, 방문하지 않은 인접 노드가 없으면 최상단 노드를 꺼낸다.
    • 2 번째 과정을 수행할 수 없을 때 까지 반복
# 각 index노드와 연결된 index노드를 저장해준다.
graph = [
	[],
    [2, 3, 8],
    ...
]

# 방문 정보 표현 list
visited = [False] * 9

def dfs(graph, v, visited):
	visited[v] = True # 현재 노드 방문 처리
    
    for i in graph[v]:
    	if not visited[i]:
        	dfs(graph, i, visited)

BFS (Breadth-First Search)

  • 너비 우선 탐색
  • 가까운 노드부터 우선적으로 탐색하는 알고리즘
  • 큐 자료 구조 이용
    • 탐색 시작 노드를 큐에 삽입 후 방문 처리
    • 큐에서 시작 노드를 꺼낸 뒤 해당 노드의 인접 노드 중 방문하지 않은 노드를 모두 큐에 삽입하고 방문 처리
    • 2 번째 과정 수행할 수 없을 때까지 반복
  • 각 간선의 비용이 동일한 상황에서 최단거리를 구할 때, 유용한 알고리즘
graph = [
	[],
    [2, 3, 8]
    ...
]

visited = [False] * 9

from collections import deque

def bfs(graph, start, visited):
	q = deque([start])
    
    visited[start] = True
    
    whlie q:
    	v = q.popleft()
        
        for i in graph[v]:
        	if not visited[i]:
            	q.append(i)
                vsitied[i] = True

음료수 얼려먹기

dfs

n, m = map(int, inpiut().split())

graph = []

def dfs(x, y):
	if x <= -1 or x >= n or y <= -1 or y >= m:
    	return False
        
	if graph[x][y] == 0:
    	graph[x][y] = 1
        
        dfs(x-1, y)
        dfs(x, y-1)
        dfs(x+1, y)
        dfs(x, y+1)
        return True
	return False
    
result = 0 
for i in range(n):
	for j in range(m):
    	if dfs(i, j) == True:
        	result += 1

미로 탈출

bfs

  • bfs는 간선의 비용이 모두 같을 때, 최단거리를 탐색하기 위해 사용하기 유용하다.
from collections import deque

n, m = map(int, input().split())

graph = []
for i in range(n):
	graph.append(list(map(int, input())))
    
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]

def bfs(x, y):
	q = deque()
    q.append((x, y))
    while q:
    	x, y = q.popleft()
        
        for i in range(4):
        	nx = x + dx[i]
            ny = y + dy[i]
            
            if nx < 0 or nx >= n or ny < 0 or ny >= m:
            	continue
			
            if graph[nx][ny] == 0:
            	continue
                
			if graph[nx][ny] == 1:
            	graph[nx][ny] = graph[x][y] + 1
                q.append((nx, ny))
	
    return graph[n-1][m-1]

print(dfs(0, 0))
profile
OnePunchLotto
post-custom-banner

0개의 댓글