[Build GPT-1] Dataset

ma-kjh·2024년 7월 19일
0

LLM

목록 보기
2/15

Reference :
Let's build GPT: from scratch, in code, spelled out. (youtube)
get-dev.ipynb (Colab)

이 post는 위 유튜브 영상을 기반으로 만들어졌습니다.

아주아주아주 간단한 버전의 LLM을 만듦으로써 어떻게 Language model이 작동하는지 살펴보는 포스트입니다.

Dataset 준비

먼저 모델을 학습시키기에 앞서, 어떤 데이터를 모델에 학습시킬 것인지 선택해야 한다. 카파시 선생님은 셰익스피어 txt 데이터를 사용함.

# We always start with a dataset to train on. Let's download the tiny shakespeare dataset
!wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

이를 위해 셰익스피어 데이터셋을 다운로드 받고 이를 학습에 사용한다.

데이터를 확인하기 위해 txt file을 string으로 변환시켜준다.

# read it in to inspect it
with open('input.txt', 'r', encoding='utf-8') as f:
    text = f.read()

print("length of dataset in characters: ", len(text))
 length of dataset in characters:  1115394

데이터셋에 존재하는 character의 개수는 위와 같다.

첫 1000자를 확인하면 다음과 같다.

# let's look at the first 1000 characters
print(text[:1000])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.

All:
We know't, we know't.

First Citizen:
Let us kill him, and we'll have corn at our own price.
Is't a verdict?

All:
No more talking on't; let it be done: away, away!

Second Citizen:
One word, good citizens.

First Citizen:
We are accounted poor citizens, the patricians good.
What authority surfeits on would relieve us: if they
would yield us but the superfluity, while it were
wholesome, we might guess they relieved us humanely;
but they think we are too dear: the leanness that
afflicts us, the object of our misery, is as an
inventory to particularise their abundance; our
sufferance is a gain to them Let us revenge this with
our pikes, ere we become rakes: for the gods know I
speak this in hunger for bread, not in thirst for revenge.

이런식으로 이뤄진 데이터를 사용해서 학습을 진행하려고 한다.

일단, character가 어떤 종류가 있는지 확인을 해보자

# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
print(''.join(chars))
print(vocab_size)
 !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
65

총 65개의 unique한 character를 가지는 걸 확인할 수 있다.

Tokenization

목적 : character level 예측모델을 만들자.

  • character level의 예측모델을 만들기 위해서 이러한 character들을 모델이 이해할 수 있도록 변환해야 하는데 이를 tokenization이라고 한다.
  • tokenization을 진행함.
    - encode : text into integer
    - decode : integer into text
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

print(encode("hii there"))
print(decode(encode("hii there")))
[46, 47, 47, 1, 58, 46, 43, 56, 43]
hii there

위 버전의 tokeinzation은 가장 간단한 버전이다. (character level tokenization)

Google은 SentencePiece text tokenizer를 사용한다.

SentencePiece는 sub-word unit(individual character는 의미를 담기에는 너무 작고, word는 너무 크기 때문에, 적절하게 자른 sub-word를 사용)을 tokenize한다.

OpenAI - tiktoken

>>> import tiktioken
>>> enc = tiktoken.get_encoding('gpt2')
>>> enc.n_vocab
50257
>>> enc.encode("hii there")
[71, 4178, 612]
>>> enc.decode([71, 4178, 612])
'hii there'

위는 OpenAI에서 제공하는 tiktoken을 사용해서 tokenization을 진행한 것인데, hii there이 chracter level tokenization을 진행했을 경우에는 9개의 Token을 가지지만, sub-word 기반의 tokenization을 사용할 경우 단 3개의 token으로 표현이 가능하다.

일반적으로, code book size와 sequence length사이의 trade-off가 존재한다.

생각해보면 아는 vocab수가 많아지면 그만큼 어떤 단어에 대해 표현할 수 있는 integer수가 많다는 것을 의미하고 이는 sequence length가 자연스럽게 작아지는 것을 알 수 있다.

반대로 vocab수가 작으면 (위 예시처럼 65)라면 모든 charcter에 대해 다 표현해야 하기 때문에 sequence length가 길어진다.

이 예시에서는 셰익스피어 데이터셋을 character level tokenizer (code book size가 65개 뿐)로 tokenize하고 학습할 임.

encoding한(token화 된) 데이터를 살펴보면 아래와 같다.

1000자를 뽑아보면, 1000개의 character를 출력하는 것을 확인할 수 있다.

# let's now encode the entire text dataset and store it into a torch.Tensor
import torch # we use PyTorch: https://pytorch.org
data = torch.tensor(encode(text), dtype=torch.long)
print(data.shape, data.dtype)
print(data[:1000]) # the 1000 characters we looked at earier will to the GPT look like this
torch.Size([1115394]) torch.int64
tensor([18, 47, 56, 57, 58,  1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 14, 43, 44,
        53, 56, 43,  1, 61, 43,  1, 54, 56, 53, 41, 43, 43, 42,  1, 39, 52, 63,
         1, 44, 59, 56, 58, 46, 43, 56,  6,  1, 46, 43, 39, 56,  1, 51, 43,  1,
        57, 54, 43, 39, 49,  8,  0,  0, 13, 50, 50, 10,  0, 31, 54, 43, 39, 49,
         6,  1, 57, 54, 43, 39, 49,  8,  0,  0, 18, 47, 56, 57, 58,  1, 15, 47,
        58, 47, 64, 43, 52, 10,  0, 37, 53, 59,  1, 39, 56, 43,  1, 39, 50, 50,
         1, 56, 43, 57, 53, 50, 60, 43, 42,  1, 56, 39, 58, 46, 43, 56,  1, 58,
        53,  1, 42, 47, 43,  1, 58, 46, 39, 52,  1, 58, 53,  1, 44, 39, 51, 47,
        57, 46, 12,  0,  0, 13, 50, 50, 10,  0, 30, 43, 57, 53, 50, 60, 43, 42,
         8,  1, 56, 43, 57, 53, 50, 60, 43, 42,  8,  0,  0, 18, 47, 56, 57, 58,
         1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 18, 47, 56, 57, 58,  6,  1, 63,
        53, 59,  1, 49, 52, 53, 61,  1, 15, 39, 47, 59, 57,  1, 25, 39, 56, 41,
        47, 59, 57,  1, 47, 57,  1, 41, 46, 47, 43, 44,  1, 43, 52, 43, 51, 63,
         1, 58, 53,  1, 58, 46, 43,  1, 54, 43, 53, 54, 50, 43,  8,  0,  0, 13,
        50, 50, 10,  0, 35, 43,  1, 49, 52, 53, 61,  5, 58,  6,  1, 61, 43,  1,
        49, 52, 53, 61,  5, 58,  8,  0,  0, 18, 47, 56, 57, 58,  1, 15, 47, 58,
        47, 64, 43, 52, 10,  0, 24, 43, 58,  1, 59, 57,  1, 49, 47, 50, 50,  1,
        46, 47, 51,  6,  1, 39, 52, 42,  1, 61, 43,  5, 50, 50,  1, 46, 39, 60,
        43,  1, 41, 53, 56, 52,  1, 39, 58,  1, 53, 59, 56,  1, 53, 61, 52,  1,
        54, 56, 47, 41, 43,  8,  0, 21, 57,  5, 58,  1, 39,  1, 60, 43, 56, 42,
        47, 41, 58, 12,  0,  0, 13, 50, 50, 10,  0, 26, 53,  1, 51, 53, 56, 43,
         1, 58, 39, 50, 49, 47, 52, 45,  1, 53, 52,  5, 58, 11,  1, 50, 43, 58,
         1, 47, 58,  1, 40, 43,  1, 42, 53, 52, 43, 10,  1, 39, 61, 39, 63,  6,
         1, 39, 61, 39, 63,  2,  0,  0, 31, 43, 41, 53, 52, 42,  1, 15, 47, 58,
        47, 64, 43, 52, 10,  0, 27, 52, 43,  1, 61, 53, 56, 42,  6,  1, 45, 53,
        53, 42,  1, 41, 47, 58, 47, 64, 43, 52, 57,  8,  0,  0, 18, 47, 56, 57,
        58,  1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 35, 43,  1, 39, 56, 43,  1,
        39, 41, 41, 53, 59, 52, 58, 43, 42,  1, 54, 53, 53, 56,  1, 41, 47, 58,
        47, 64, 43, 52, 57,  6,  1, 58, 46, 43,  1, 54, 39, 58, 56, 47, 41, 47,
        39, 52, 57,  1, 45, 53, 53, 42,  8,  0, 35, 46, 39, 58,  1, 39, 59, 58,
        46, 53, 56, 47, 58, 63,  1, 57, 59, 56, 44, 43, 47, 58, 57,  1, 53, 52,
         1, 61, 53, 59, 50, 42,  1, 56, 43, 50, 47, 43, 60, 43,  1, 59, 57, 10,
         1, 47, 44,  1, 58, 46, 43, 63,  0, 61, 53, 59, 50, 42,  1, 63, 47, 43,
        50, 42,  1, 59, 57,  1, 40, 59, 58,  1, 58, 46, 43,  1, 57, 59, 54, 43,
        56, 44, 50, 59, 47, 58, 63,  6,  1, 61, 46, 47, 50, 43,  1, 47, 58,  1,
        61, 43, 56, 43,  0, 61, 46, 53, 50, 43, 57, 53, 51, 43,  6,  1, 61, 43,
         1, 51, 47, 45, 46, 58,  1, 45, 59, 43, 57, 57,  1, 58, 46, 43, 63,  1,
        56, 43, 50, 47, 43, 60, 43, 42,  1, 59, 57,  1, 46, 59, 51, 39, 52, 43,
        50, 63, 11,  0, 40, 59, 58,  1, 58, 46, 43, 63,  1, 58, 46, 47, 52, 49,
         1, 61, 43,  1, 39, 56, 43,  1, 58, 53, 53,  1, 42, 43, 39, 56, 10,  1,
        58, 46, 43,  1, 50, 43, 39, 52, 52, 43, 57, 57,  1, 58, 46, 39, 58,  0,
        39, 44, 44, 50, 47, 41, 58, 57,  1, 59, 57,  6,  1, 58, 46, 43,  1, 53,
        40, 48, 43, 41, 58,  1, 53, 44,  1, 53, 59, 56,  1, 51, 47, 57, 43, 56,
        63,  6,  1, 47, 57,  1, 39, 57,  1, 39, 52,  0, 47, 52, 60, 43, 52, 58,
        53, 56, 63,  1, 58, 53,  1, 54, 39, 56, 58, 47, 41, 59, 50, 39, 56, 47,
        57, 43,  1, 58, 46, 43, 47, 56,  1, 39, 40, 59, 52, 42, 39, 52, 41, 43,
        11,  1, 53, 59, 56,  0, 57, 59, 44, 44, 43, 56, 39, 52, 41, 43,  1, 47,
        57,  1, 39,  1, 45, 39, 47, 52,  1, 58, 53,  1, 58, 46, 43, 51,  1, 24,
        43, 58,  1, 59, 57,  1, 56, 43, 60, 43, 52, 45, 43,  1, 58, 46, 47, 57,
         1, 61, 47, 58, 46,  0, 53, 59, 56,  1, 54, 47, 49, 43, 57,  6,  1, 43,
        56, 43,  1, 61, 43,  1, 40, 43, 41, 53, 51, 43,  1, 56, 39, 49, 43, 57,
        10,  1, 44, 53, 56,  1, 58, 46, 43,  1, 45, 53, 42, 57,  1, 49, 52, 53,
        61,  1, 21,  0, 57, 54, 43, 39, 49,  1, 58, 46, 47, 57,  1, 47, 52,  1,
        46, 59, 52, 45, 43, 56,  1, 44, 53, 56,  1, 40, 56, 43, 39, 42,  6,  1,
        52, 53, 58,  1, 47, 52,  1, 58, 46, 47, 56, 57, 58,  1, 44, 53, 56,  1,
        56, 43, 60, 43, 52, 45, 43,  8,  0,  0])
# Let's now split up the data into train and validation sets
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]

Training mechanism

학습을 위해 90퍼센트는 훈련셋, 10퍼센트는 평가셋으로 둔다.

그러면 이제 어떻게 학습하기 좋게 데이터를 사용할건지 살펴보자.

일반적으로 모델이 학습하는데 있어서 많은 계산량이 들기 때문에이러한 모든 길이의 training data를 한꺼번에 넣지는 않을 것이다.

그래서 이를 random한 chunk로 만들어서 훈련에 사용하는데, 어떤 maximum length를 정해주는 것으로 볼 수 있다.

그렇게 block_size==8로 정의하고 나서 train data를 보면 다음과 같다.

block_size = 8
train_data[:block_size+1]
tensor([18, 47, 56, 57, 58,  1, 15, 47, 58])

이런 식으로 9개의 character를 가지고 학습을 진행한다. (block_size는 8 인데 왜 9개를 뽑았느냐 ?)

실제로 Transformer의 학습에 사용되는 것은 동시에 저 9개의 position에 대해서 prediction을 만들어내는 것이다. 무슨 말이냐면

[18] context에 대해서 다음 예측은 [47]
[18, 47] context에 대해서 다음 예측은 [56]
...
[18, 47, 56, 57, 58, 1, 15, 47] context에 대해서 다음 예측은 [58]

따라서 8개의 block size에서 하나 추가된 9개의 데이터를 sample하여 어떤 값으로 예측해야 할지 알려줘야 함.

x = train_data[:block_size]
y = train_data[1:block_size+1]
for t in range(block_size):
    context = x[:t+1]
    target = y[t]
    print(f"when input is {context} the target: {target}")
when input is tensor([18]) the target: 47
when input is tensor([18, 47]) the target: 56
when input is tensor([18, 47, 56]) the target: 57
when input is tensor([18, 47, 56, 57]) the target: 58
when input is tensor([18, 47, 56, 57, 58]) the target: 1
when input is tensor([18, 47, 56, 57, 58,  1]) the target: 15
when input is tensor([18, 47, 56, 57, 58,  1, 15]) the target: 47
when input is tensor([18, 47, 56, 57, 58,  1, 15, 47]) the target: 58

이렇게 학습을 진행하는 이유는 Transformer Network가 가장 작은 1개의 사이즈부터 block size까지 볼 수 있도록 하기 위함이다.

inference에서 sampling시에 하나의 character context만으로 inference가 가능하다.

그리고 block size까지 예측을 진행한다.

그러고 나서는 truncating을 함. (뒤에를 잘라줌)

왜냐면 Transformer는 block size보다 더 긴 sequence를 본적이 없기 때문. (아마 이런 이유로 sequence length를 길게 하는게 의미가 있는 것으로 보인다.)

이걸 어떻게 batch dimension과 함꼐 사용할 수 있을지.

Batch화

torch.manual_seed(1337)
batch_size = 4 # how many independent sequences will we process in parallel?
block_size = 8 # what is the maximum context length for predictions?

def get_batch(split):
    # generate a small batch of data of inputs x and targets y
    data = train_data if split == 'train' else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([data[i:i+block_size] for i in ix])
    y = torch.stack([data[i+1:i+block_size+1] for i in ix])
    return x, y

xb, yb = get_batch('train')
print('inputs:')
print(xb.shape)
print(xb)
print('targets:')
print(yb.shape)
print(yb)

print('----')

for b in range(batch_size): # batch dimension
    for t in range(block_size): # time dimension
        context = xb[b, :t+1]
        target = yb[b,t]
        print(f"when input is {context.tolist()} the target: {target}")
inputs:
torch.Size([4, 8])
tensor([[24, 43, 58,  5, 57,  1, 46, 43],
        [44, 53, 56,  1, 58, 46, 39, 58],
        [52, 58,  1, 58, 46, 39, 58,  1],
        [25, 17, 27, 10,  0, 21,  1, 54]])
targets:
torch.Size([4, 8])
tensor([[43, 58,  5, 57,  1, 46, 43, 39],
        [53, 56,  1, 58, 46, 39, 58,  1],
        [58,  1, 58, 46, 39, 58,  1, 46],
        [17, 27, 10,  0, 21,  1, 54, 39]])
        
----
when input is [24] the target: 43
when input is [24, 43] the target: 58
when input is [24, 43, 58] the target: 5
when input is [24, 43, 58, 5] the target: 57
when input is [24, 43, 58, 5, 57] the target: 1
when input is [24, 43, 58, 5, 57, 1] the target: 46
when input is [24, 43, 58, 5, 57, 1, 46] the target: 43
when input is [24, 43, 58, 5, 57, 1, 46, 43] the target: 39
when input is [44] the target: 53
when input is [44, 53] the target: 56
when input is [44, 53, 56] the target: 1
when input is [44, 53, 56, 1] the target: 58
when input is [44, 53, 56, 1, 58] the target: 46
when input is [44, 53, 56, 1, 58, 46] the target: 39
when input is [44, 53, 56, 1, 58, 46, 39] the target: 58
when input is [44, 53, 56, 1, 58, 46, 39, 58] the target: 1
when input is [52] the target: 58
when input is [52, 58] the target: 1
when input is [52, 58, 1] the target: 58
when input is [52, 58, 1, 58] the target: 46
when input is [52, 58, 1, 58, 46] the target: 39
when input is [52, 58, 1, 58, 46, 39] the target: 58
when input is [52, 58, 1, 58, 46, 39, 58] the target: 1
when input is [52, 58, 1, 58, 46, 39, 58, 1] the target: 46
when input is [25] the target: 17
when input is [25, 17] the target: 27
when input is [25, 17, 27] the target: 10
when input is [25, 17, 27, 10] the target: 0
when input is [25, 17, 27, 10, 0] the target: 21
when input is [25, 17, 27, 10, 0, 21] the target: 1
when input is [25, 17, 27, 10, 0, 21, 1] the target: 54
when input is [25, 17, 27, 10, 0, 21, 1, 54] the target: 39
print(xb) # our input to the transformer
tensor([[24, 43, 58,  5, 57,  1, 46, 43],
        [44, 53, 56,  1, 58, 46, 39, 58],
        [52, 58,  1, 58, 46, 39, 58,  1],
        [25, 17, 27, 10,  0, 21,  1, 54]])
profile
거인의 어깨에 올라서서 더 넓은 세상을 바라보라 - 아이작 뉴턴

0개의 댓글