UDL을 매주 공부해 볼 예정입니다.
simon J.D. Prince 의 책으로 공부를 진행하겠습니다.
UDL의 목차를 살펴봅시다.
contents
1.Introduction
2.Supervised learning
3. Shallow neural networks
4. Deep neural networks
5. Loss functions
6. Fitting models
7. Gradients and initialization
9. Regularization
10. Convolutional networks
11. Residual networks
13. Graph neural networks
14. Unsupervised learning
15. Generative Adversarial Networks
16. Normalizing flows
17. Variational autoencoders
18. Diffusion models
19. Reinforcement learning
20. Why does deep learning work?
21. Deep learning and ethics
A. Notion
B. Mathematics
C. Probability
UDL을 공부하는데 도움이 되는 사이트를 소개합니다.
출처
https://udlbook.github.io/udlbook/