Importing NumPy
import numpy as np
Creating Arrays
# Create a 1-D array
arr = np.array([1, 2, 3])
# Create a 2-D array
arr = np.array([[1, 2, 3], [4, 5, 6]])
# Create an array with zeros
arr = np.zeros((3, 4))
# Create an array with ones
arr = np.ones((2, 3))
# Create an array with random values
arr = np.random.random((2, 3))
Accessing Array Elements
# Access an element of a 1-D array
arr = np.array([1, 2, 3])
print(arr[0]) # 1
# Access a slice of a 1-D array
arr = np.array([1, 2, 3, 4, 5])
print(arr[1:4]) # [2, 3, 4]
# Access an element of a 2-D array
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr[0, 1]) # 2
# Access a slice of a 2-D array
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr[0:2, 1:3]) # [[2, 3], [5, 6]]
Reshaping Arrays
arr = np.array([1, 2, 3, 4, 5, 6])
new_arr = arr.reshape(2, 3)
Flattening Arrays
arr = np.array([[1, 2], [3, 4], [5, 6]])
new_arr = arr.ravel()
Transposing Arrays
arr = np.array([[1, 2], [3, 4]])
new_arr = arr.transpose()
Basic Array Operations
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
new_arr = arr1 + arr2
Mathematical Functions
arr = np.array([1, 2, 3])
new_arr = np.sqrt(arr)
Statistical Functions
arr = np.array([1, 2, 3, 4, 5, 6])
mean = np.mean(arr)
Linear Algebra
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
new_arr = np.dot(arr1, arr2)
Saving and Loading Arrays
arr = np.array([1, 2, 3, 4, 5])
np.save('my_array', arr)
arr = np.load('my_array.npy')
Broadcasting
arr1 = np.array([1, 2, 3])
arr2 = 2
new_arr = arr1 * arr2
Concatenating Arrays
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
new_arr = np.concatenate((arr1, arr2))
Stacking Arrays
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
new_arr = np.hstack((arr1, arr2))
Slicing and Masking
arr = np.array([1, 2, 3, 4, 5])
new_arr = arr[arr > 2]
Unique Values
arr = np.array([1, 2, 1, 3, 4, 2, 5, 6, 5])
new_arr = np.unique(arr)
Sorting Arrays
arr = np.array([3, 2, 1, 4, 6, 5])
new_arr = np.sort(arr)
arr = np.array([1, 2, 3, 4, 5])
np.savetxt('my_array.txt', arr)
arr = np.loadtxt('my_array.txt')
import matplotlib.pyplot as plt
t = np.linspace(0, 1, 100)
y = np.sin(2 * np.pi * 5 * t)
fft_y = np.fft.fft(y)
plt.plot(fft_y)
Masked Arrays
arr = np.array([1, 2, -999, 4, -999, 6])
mask = arr != -999
new_arr = arr[mask]
Reference
Numpy Official Documentation