고등수학까지만 공부하고 미적분학(Calculs) 를 독학으로 공부한 내용을 정리한 글입니다. 책은 Man Sik Min·Hyeong Chul Jeong·Hyejung Lee, 『CALCULUS』, 한티미디어 입니다.
0. Preface
시작부터 어질어질하다;;
용어 정리
Calculs: 미적분학
partial derivative: 편미분
multiple integral: 중적분
composite function: 합성함수
inverse function: 역함수
exponential function: 지수함수
log function: 로그함수
trigonometric function: 삼각함수
limits of functions: 함수의 극한
continuity: 연속성
transcendental function: 초월함수
mean value theorem: 중간값 정리
indefinite: 부정
revolution: 회전
improper: 이상
derivative: 미분(微分), 작을 미, 나눌 분
normal line: 법선(法線), 법 법, e.g. 법률, 방법
slope: 기울기
local maximum: 극대(極大), 극진할·다할 극
local minimum: 극소(極小)
indefinite integral: 부정적분
definite integral: 정적분
curve: 곡선
volume of revolution: 회전체의 부피
arcs: 호(弧), 활 호
plain: 평면
improper integral: 이상적분
multivariate function: 다변수 함수
differential equation: 미분 방정식
series: 급수(級數), 등급 급, 셈 수
parametric calculus: 매개변수 미적분
polar coordinate: 극좌표계
dot product: 내적
cross product: 외적
substitution integration: 치환 적분
first-order linear differential equation: 일차 선형 미분 방정식
formula: 공식
equation: 방정식
1. Relations and Functions
- Relation
A relation is a set of ordered pairs (x,y).
The domain of a relation is the set of all x-values from the ordered pairs.
The range of a relation is the set of all y-values from the ordered pairs.
- Function
A function is a special type of relation in which each element of the domain is paired with exactly one element of the range.
A relation is a function if and only if no vertical line intersects its graph more than once.
용어 정리
ordered pair: 순서쌍
2. Slope
The slope m of the line passing throught points (x1,y1) and (x2,y2) is given by... m=x2−y1y2−y1, where x1=x2.
3. Linear Functions
A function f is a linear function if it can be written in the form f(x)=mx+b, where m and b are constants.
The Graph of a linear function is a nonvertical straight line with slope m and y-intercept b.
용어 정리
intercept: 절편(截片), 끊을 절, 조각 편
4. Equation of Lines
Slope-Intercept Form: y=mx+b, where m is the slope and b is the y-intercept
Point-Slope Form: y−y1=m(x−x1), where m is the slope and (x1,y1) is a point on the line.
Standard Form: Ax+By=C, where A, B, and C are integers.
Vertical Line: x=a, where a is the x-intercept. the slope is undefined.
Horizontal Line: y=b, where b is the y-intercept. The slope is zero.
5. Parallel and Perpendicular Lines
Two different lines with equations y=m1x+b1 and y=m2x+b2 are parallel if m1=m2 (the slopes are equal). They are perpendicular if m1⋅m2=−1 (the slopes are negative reciprocals).
용어 정리
perpendicular: 직각의, 수직적인
reciprocals: 상호의, 호혜적인, 역수의
6. Quadratic Functions
A Quadratic function is function that can be written in the form f(x)=ax2+bx+c (a=0).
The graph of a quadratic function is a parabola.
The line of symmetry for a quadratic function is x=−2ab, and the vertex is (−2ab,f(−2ab)).
- Solutions, Roots, and Zeros of Functions.
The solutions of a function is the value(s) of x for which f(x)=0. Solutions of functions are also called roots or zeros.
On a graph, the solution of the function is the x-intercept(s).
- Discriminant and Roots of a Quadratic Functions
The solutions of the quadratic equation ax2+bx+c=0 are given by the quadratic formula:
x=2a−b±b2−4ac
The expression b2−4ac is called the discriminant.
If the discriminant b2−4ac>0, then there are two real roots, and the graph crosses the x-axis twice.
If the discriminant b2−4ac=0, then there is one real root, and the graph is tangent to the x-axis.
If b2−4ac>0, then there are no real roots, and the graph does not cross the x-axis.
용어 정리
symmetry: 대칭
vertex: 꼭짓점
solution: 해(解), 풀 해
root: 근(根), 뿌리 근
zero: 영(0)
discriminant: 판별식(判別式), 판단할 판, 다를·나눌 별, 법 식
real roots: 실근
tangent to: ~에 접하다
오탈자?
Example 6: what is one ossible value of k
7. Laws of Exponents
Name
Laws
Products Of Powers
am⋅an=am+n
Quotient of Powers
anam=am−n
Power of a Power
(am)n=amn
Power of a Quotient
(ba)n=bnan(a=b)
Negative Exponent
a−n=an1 (ba)−n=(ab)n(ab=0)
Zero Exponent
a0=1(a=0)
용어 정리
power: 거듭제곱
exponent: 지수
quotient: 정수의 나눗셈 -> 몫, 그 외의 상황 -> 비율, 분수꼴
8. Special Products and Factoring Polynomials
Name
Laws
Difference of Two Squres
a2−a2=(a+b)(a−b)
Sum of Two cubes
a3+b3=(a+b)(a2−ab+b2)
Difference of Two Cubes
a3−b3=(a−b)(a2+ab−b2)
Perfect Square Trinomials
(a2+2ab+b2)=(a+b)2 (a2−2ab+b2)=(a−b)2
Cubes of Binomials
(a3+3a2b+3ab2+b3)=(a+b)3 (a3−3a2b+3ab2−b3)=(a−b)3
용어 정리
Square: 제곱
Cube: 세제곱
Trinomials: 삼항식
Binomials: 이항식
9. Composition of Functions
Given the two functions f and g, the composition function, denoted by (f∘g)(x)=f(g(x)).
In order for a value of x to be in the domain of f∘g, two conditions must be satisfied...
x must be in the domain of g, and
g(x) must be in the domain of f.
10. Inverse Functions
The functions f and g are inverse functions if...
f(g(x))=x for all x-values in the domain of g and
g(f(x))=x for all x-values in the domain of f.
- The inverse of a function f is usually denoted by f−1, which is read "f inverse".
- The graph of a function f and the graph of its inverse f−1 are symmetric about the line y=x.
- Finding an Inverse Function
Replace f(x) with y.
Interchange x and y.
Solve for y.
11. Even and Odd Functions
The function f(x) is even if f(−x)=f(x). The graph of an even function is symmetric about they y-axis.
The function f(x) is odd if f(−x)=−f(x). The graph of an odd function is symmetric about the origin.
용어 정리
Even: 짝수
Odd: 홀수
Even function: 짝함수, 우함수
Odd function: 홀함수, 기함수
12. Special Functions
The greatest integer function is defined as f(x)=[x]= the greatest integer less than or equal to x.
When the domain of a function is divided into several parts and a different function rule is applied to each part, the function is called a piecewise-defined function.
오탈자?
f(x)=[x]=
용어 정리
greatest integer function: 최대 정수 함수
piecewise-defined function: 조각별-정의된 함수, 하이브리드 함수, 클래스에 의한 정의 함수, etc.
13. Distance Formula
The distance between two points with coordinates (x1,y1) and (x2,y2) is given by...
d=(x2−x1)2+(y2−y1)2.
14. Midpoint Formula
The midpoint of a line segment with endpoints (x1,y1) and (x2,y2) is the point with coordinates M(2x1+x2,2y1+y2).
용어 정리
line segment: 선분
midpoint: 중점
15. Circles
The equation of a circle with center (h,k) and radius r units if (x−h)2+(y−k)2=r2.
16. Parabolas
- Open Up-downward Parabola
y=a(x−h)2+k
a>0, open upward
a<0, open downward
Vertex: V(h,k)
axis of symmetry: x=h
- Open Right-left Parabola
x=a(y−k)2+h
$a
용어 정리
parabola: 포물선
오탈자?
Figure 1.8 과 상단에서 describe 하는 수식이 서로 다름.
17. Ellipses
- Horizontal major axis
a2(x−h)2+b2(y−k)2=1, where a2>b2.
- Center: (h,k)
- Length of horizontal axis: 2a.
- Length of vertical axis: 2b.
- Area of an ellipse = πab.
- Vertical major axis
The Vertical major axis is the opposite of a horizontal major axis.
용어 정리
ellipse: 타원 axis: 축 major axis: 장축 minor axis: 단축
18. Hyperbolas
left-right opened style
a2(x−y)2−b2(y−k)2=1
- Center: (h,k)
- Distance between vertices: a
upward-downward opened style
upward-downward opened style is the opposite of a left-right opened style.
용어 정리
hyperbola: 쌍곡선
19. Definition of Logarithm
If b and x are positive and b=1, logbx=y if and only if x=by. An equation of the form y=logbx is called a logarithm function. The domain of a logarithmic function is (0,∞) and the range is (−∞,∞).
20. Properties of Logarithms
logbMN=logbM+logbN
logbNM=logbM−logbN
logbMp=p⋅logbM
blogbN=N
logbb=1
logb1=0
logbx=logablogaM
21. Common and Natural Logarithms
Common Logarithms
The function y=log10x is called the common logarithmic function. It is usually written without the subscript 10, so log10x is written as logx.
Natural Logarithms
The function y=logex is called the natural logarithmic function. It is usually written without the subscript e, and is written as lnx. The number of e is an irrational number whose value is approximately 2.718.
용어 정리
irrational number: 무리수
22. Trigonometric Functions of Acute Angles
The trigonometric functions of any angle 0°<θ<90° are defined as follows:
sinθ=hypotenuseoppositeside=ry
cscθ=sinθ1=yr(y=0)
cosθ=hypotenuseadjacentside=rx
secθ=cosθ1=xr(x=0)
tanθ=adjacentsideoppositeside=xy
cotθ=tanθ1=yx(y=0)
용어 정리
opposite side: 대변
hypotenuse: 빗변
adjacent side: 밑변
acute, right, obtuse angle: 예각, 직각, 둔각
오탈자?
sinθ=hypotenuseoppositeside=rx (x) ry (o)
23. Trigonometric Functions and the Unit Circle
The unit circle is a circle with center (0,0) and radius 1, whose equation is x2+y2=1. Let P(x,y) be a point on the unit circle on the terminal side of θ. Then the six triogonometric functions for any angle θ are defined as follows...
sinθ=ry=1y=y
cscθ=y1
cosθ=rx=1x=x
secθ=x1
tanθ=xy
cotθ=yx
- Reference angle
The reference angle associated with θ is the aucte angle formed by the x-axis and the terminal side of the angle θ
용어 정리
암만 initial side, terminal side 의 번역을 찾으려 해도 나오질 않아서, initial side 를 시선과 terminal side 를 종선으로 번역한 분의 블로그를 보고 아래와 같이 정리하였음. 실제 수학계에서 이와 같이 사용하는지는 의문...
initial sie: 시선(始線), 비로소 시, 줄 선
terminal side: 종선(終線), 마칠 종, 줄 선
영어로는 다음과 같이 정의되어 있음: A straight line that has been rotated around a poin on another line to form an angle measured in a clockwise or counterclockwise direction.
unit circle: 단위원
reference angle: 참조각? 마땅한 뜻이 안 나옴.
24. Familiar Angles
Angles in standard position whose measure are multiple of 6π radians or multiples of 4π radians are called familiar angles.
θ
0
6π
4π
E3π
2π
sinθ
20=0
21=21
22=0
23=0
24=1
cosθ
24=1
23
22=0
21=21
20=0
- Standard Position
An angle is in standard position if its vertex is located at the origin and one ray is on the x-axis.
25. Basic Trigonometric Identities
- Identities from the Defenitions of Trigonometric Functions
A trigonometric equations is any statement involving the conditional equality of two trigonometric expressions (Most trigonometric equations are true for some but not all values of the variable.) The values that satisfy the equation are called solution of the equation.
31. Inverse Trigonometric Functions
- arcsine
The inverse sine function, denoted by y=sin−1x or y=arcsinx, is the function with a domain of [−1,1] and a range of [−2π,2π] that satisfies the relation siny=x.
- arccosine
The inverse cosine function, denoted by y=cos−1x or y=arccosx, is the function with a domain of [−1,1] and a range of [0,π] that satisfies the relation cosy=x.
- arctangent
The inverse tangent function, denoted by y=tan−1x or y = arctanx, is the function with a domain of (−∞,∞) and a range of (−2π,2π) that satisfies the relation tany=x.
32. Vectors
A vector is a directed line segment. The symbol PQ (read "vector PQ") denotes the vector extending from point P(x1,y1), the initial point, to point Q(x2,y2), the terminal point. PQ=⟨x2,−x1,y2−y1⟩.
Boldface letters such as u and v are often used to denote vectors, and the vector PQ can also be written as u=⟨a,b⟩=⟨x2−x1,y2−y1⟩.
The length or magnitude of the vector u=⟨a,b⟩ is. denoted by ∣u∣, and ∣u∣=a2+b2.
If two vectors u and v have the same length and direction, we say that they are equal and we write u = v.
- Algebraic Approach
ku=k⟨a,b⟩=⟨ka,kb⟩.
Let u=⟨a,b⟩ and v=⟨c,d⟩ be two vectors. Then...
- u+v=⟨a,b⟩+⟨c,d⟩=⟨a+c,b+d⟩
- u−v=⟨a,b⟩−⟨c,d⟩=⟨a−c,b−d⟩
용어 정리
line segment: 선분
Algebraic: 대수적
33. Polar Coordinates
A polar coordinate system consists of a point O called the pole, and a ray called the polar axis, whose endpoint is the fixed point O.
The polar coordinates of a point P are an ordered pair (r,θ), where r is the distance from the origin O to the point P, and θ is the measure of the angle formed by the polar axis and the segment OP.
- Comparing Rectangular and Polar Coordinate Systems
Rectangular Coordinates
Polar Coordinates
Origin
Pole
Positive x-axis
Polar axis or θ=0
P(x,y)
P(r,θ)
Positive y-axis
θ=π/2
- Coordinate-System Conversion Formulas
x=rcosθy=rsinθ
r2=x2+y2tanθ=xy(x=0)
용어 정리
pole: 극
polar axis: 극축
polar coordinate: 극좌표계
+ 추가
모든 파트를 다 정리하고 느낀 점은 mathematics fields 에서 사용하는 terminology 를 번역하는 것이 큰 의미가 없다는 생각이 들었다. 그 이유는 아래와 같다:
1. 번역된 용어가 원용어 의미를 완전하게 전달하지 못함.
local maximum 과 local minimum 을 극대(極大), 그리고 극소(極小) 로 번역하는 것보단 원문을 그대로 놓고 보는 것이 그 의미가 더 명확하다는 생각이 들었다.
2. 사고 과정이 한 단계 추가되어 의미를 이해하는데 시간이 오래 걸린다.
달리다 가 무슨 뜻인가? 보통 이런 생각을 하는 사람은 없다. 달리다 가 무슨 뜻인지 생각하기 이전에 달리다 라는 용어가 주는 그 느낌과 의미가 머리를 지배한다. 그러나 원어를 한국어로 번역하기 시작하면서 필자는 아래와 같이 사고하기 시작했다.
"run 이 한국어로 무슨 뜻이지?"
"아! run 은 한국어로 달리다 구나?"
이제 달리다 라는 단어의 느낌과 그 의미를 머릿 속으로 떠올림.
따라서 원용어 그 자체가 주는 느낌과 의미를 더 잘 기억할 수 있도록, 원어를 한국어로 번역하지 않을 예정이다. 그것 자체가 주는 느낌과 의미, 감각만을 떠올리기 위해 노력할 것이다.
따라서 새로운 terms 가 나오면 그 해석을 한국어가 아닌 원어로 풀어쓴다.
terminal side: 종선(終線), 마칠 종, 줄 선
위 구문을 이후의 챕터부턴 아래와 같이 작성할 것이다:
terminal side: A straight line that has been rotated around a poin on another line to form an angle measured in a clockwise or counterclockwise direction.