[Calculus] #2 Limits and Continuity

문연수·2022년 4월 14일
0

Calculus

목록 보기
2/5
post-thumbnail

1. Limit Existence

 The number LL is the limit of the function f(x)f(x) as xx approaches cc if, as the values of xx get arbitrarily close (but not equal) to cc, the values of f(x)f(x) approach (or equal) LL. We write...

limxcf(x)=L\lim_{x \to c}f(x) = L

 In order for limxcf(x)\lim_{x \to c}f(x) to exist, the values of ff must tend to the same number LL as xx approaches cc from either the left or the right. We write...

limxcf(x)\lim_{x \to c^-}f(x)

 for the left-hand limit of ff at cc (as xx approaches cc through values less than cc), and

limxc+f(x)\lim_{x \to c^+}f(x)

 for the right-hand limit of ff at cc (as xx approaches cc through values greater than cc).

- Limit Laws

If LL, MM, cc and kk are real numbers and limxcf(x)=L\lim_{x \to c}f(x) = L and limxcg(x)=M\lim_{x \to c}g(x) = M, then....

  • Sum Rule: limxc(f(x)+g(x))=L+M\lim_{x \to c}(f(x) + g(x)) = L + M
  • Difference Rule: limxc(f(x)g(x))=LM\lim_{x \to c}(f(x) - g(x)) = L - M
  • Constant Multiple Rule: limxc(kf(x))=kL\lim_{x \to c }(k \cdot f(x)) = k \cdot L
  • Product Rule: limxc(f(x)g(x))=LM\lim_{x \to c}(f(x) \cdot g(x)) = L \cdot M
  • Quotient Rule: limxcf(x)g(x)=LM\lim_{x \to c}\frac{f(x)}{g(x)} = \frac{L}{M}
  • Power Rule: limxc[f(x)]n=Ln\lim_{x \to c}[f(x)]^n = L^n, nn a positive integer
  • Root Rule: limxcf(x)n=Ln=L1n\lim_{x \to c}{\sqrt[n]{f(x)}} = \sqrt[n]{L} = L^\frac{1}{n}, nn a positive integer
    (If nn is even, we assume that limxcf(x)=L>0\lim_{x \to c}f(x) = L > 0)

- Indeterminate form of type 00\frac{0}{0}

  • Rational Expressions:
     Step 1. Factor the numerator and denominator.
     Step 2. Cancel the common factor.
  • Radical Expressions:
     Step 1. Multiply the numerator and denominator by the conjugate.
     Step 2. Cancel the common factor.

- Definition of Absolute Value

x={xifx0xifx<0|x| = \begin{cases} x & \text{if} & x \geq 0 \\ -x & \text{if} & x < 0 \end{cases}

2. Squeezing Theorem (Sandwich Theorem)

 The Sandwich Theorem Suppose that g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) for all xx in some open interval containing cc, except possibly at x=cx = c itself.

 Suppose also that limxcg(x)=limxch(x)=L\lim_{x \to c}g(x) = \lim_{x \to c}h(x) = L.

Then...

limxcf(x)=L\lim_{x \to c}f(x) = L

3. Limit of Trigonometric Function

limθ0sinθθ=1\lim_{\theta \to 0}\frac{\sin{\theta}}{\theta} = 1 (θ\theta in radians)

증명하는 법이 있는데 너무 길어서 생략. 그러나 위 그림만 기억하면 언제든지 증명 가능.

- 오탈자?

  • 1>sinθθ>cosθ1 > \frac{\sin{\theta}}{\theta} > \cos{\theta} 가 맞는거 아닌가?
  • Example 1. Evaluato the following limtis

4. Limit of Exponential and Logarithmic Functions.

- Expoential ee

limx±(1+1x)x=limx0(1+x)1x=2.7182...=e\lim_{x \to \pm \infty}(1 + \frac{1}{x})^x = \lim_{x \to 0}(1 + x)^\frac{1}{x} = 2.7182... = e

5. Limits Involving Infinity

- Limit of Rational Function in the form \frac{\infty}{\infty}.

 Divide both the numerator and the denominator by the highest power of xx in theg denominator.

- Horizontal Asymptote

A line y=by = b is a horizontal asymptote of the graph of a function y=f(x)y = f(x) if either

limxf(x)=b\lim_{x \to \infty}f(x) = b or limxf(x)=b\lim_{x \to -\infty}f(x) = b.

- Horizontal Asymptote of Rational Functions

y=axm+.....bxn+......y = \frac{ax^m + .....}{bx^n + ......}

  1. m=n:y=abm = n : y = \frac{a}{b} is the horizontal asymptote
  2. m<n:y=0m < n : y = 0 is the horizontal asymptote
  3. m>n:m > n : there is no horizontal asymptote

- Verticacl Asymptote

  A line x=ax = a is a vertical asymptote of the graph of a function y=f(x)y = f(x) if either...

limxa+f(x)=±lim_{x \to a^+}f(x) = \pm\infty or limxaf(x)=±\lim_{x \to a^-}f(x) = \pm\infty

6. Continuity

- Continuity Test

 A function f(x)f(x) is continous at an interior point x=cx = c of its domain if and only if it meets the following three conditions:

  1. f(c)f(c) exists      (cc lies in the domains of ff).
  2. limxcf(x)lim_{x \to c}f(x) exists.  (ff has a limit as xcx \to c).
  3. limxcf(x)=f(c)\lim_{x \to c}f(x) = f(c). (the limit equals the function value).

7. Average Rate of Change and Instantaneous Rate of Change

 The average rate of change of y=f(x)y = f(x) with respect to xx over the interval [x1,x2][x_1, x_2] is...

ΔyΔx=f(x2)f(x1)x2x1=f(x1+h)f(x1)h,h0\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, h\neq 0

- Tangent Slope

 The instantaneous rate of change of ff with respect to xx at x=a:x = a: tangent slope

f(a)=dydxx=a=limxaf(x)f(a)xaf'(a) = \frac{dy}{dx}|_{x = a} = \lim_{x \to a}\frac{f(x) - f(a)}{x - a} or limh0f(a+h)f(a)h\lim_{h \to 0}\frac{f(a + h) - f(a)}{h}

 The tangent slope is the slope of the line tangent to the curve at a point x=ax = a.

8. Intermediate Value Theorem (I.V.T.)

If ff is a continous function on a closed interval [a,b][a, b], and if y0y_0 is any value between f(a)f(a) and f(b)f(b), then f(c)=y0f(c) = y_0 for some cc in [a.b][a. b].

- 용어 정리

  • Rational number: In mathematics, a rational number is a number that can be expressed as the quotient or fraction pq\frac{p}{q} of two integers, a numerator pp and a non-zero denominator qq.
  • Asymptote: In analytic geometry, an asymptote (/ˈæsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity

출처

[책][책] Man Sik Min · Hyeong Chul Jeong · Hyejung Lee, 『CALCULUS』, 한티미디어, p49-82.
[이미지] https://datastory1.blogspot.com/2018/12/blog-post_28.html
[사이트] https://en.wikipedia.org/wiki/Rational_number
[사이트] https://en.wikipedia.org/wiki/Asymptote

profile
2000.11.30

0개의 댓글