sns
# In[1]
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
sns.set() # seaborn's method to set its chart style
# In[2]
data=np.random.multivariate_normal([0,0],[[5,2],[2,2]],size=2000)
data=pd.DataFrame(data,columns=['x','y'])
for col in 'xy':
plt.hist(data[col],density=True,alpha=0.5)
sns.kdeplot
.# In[3]
sns.kdeplot(data=data,shade=True);
x
and y
columns to kdeplot
, we instead get a two-dimensional visualization of the joint density.# In[4]
sns.kdeplot(data=data,x='x',y='y');
sns.jointplot
, which we'll explore further later in this chapter.# In[5]
iris=sns.load_dataset('iris')
iris.head()
# Out[5]
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
sns.pairplot
.# In[6]
sns.pairplot(iris,hue='species',height=2.5);
FaceGrid
makes this simple. We'll take a look at some data that shows the amount that restaurant staff receive in tips based on various indicator data.# In[7]
tips=sns.load_dataset('tips')
tips.head()
# Out[7]
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
# In[8]
tips['tip_pct']=100 * tips['tip'] / tips['total_bill']
grid=sns.FacetGrid(tips,row='sex',col='time',margin_titles=True)
grid.map(plt.hist,"tip_pct",bins=np.linspace(0,40,15));
# In[9]
with sns.axes_style(style='ticks'):
g=sns.catplot(x='day',y='total_bill',hue='sex',
data=tips,kind='box')
g.set_axis_labels("Day","Total Bill");
sns.jointplot
to show the joint distribution between different datasets, along with the associated marginal distributions.# In[10]
with sns.axes_style('white'):
sns.jointplot(x='total_bill',y='tip',data=tips,kind='hex')
# In[11]
sns.jointplot(x='total_bill',y='tip',data=tips,kind='reg');
sns.factorplot
.# In[12]
planets=sns.load_dataset('planets')
planets.head()
# Out[12]
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# In[13]
with sns.axes_style('white'):
g=sns.catplot(x='year',data=planets,aspect=2,
kind='count',color='steelblue')
g.set_xticklabels(step=5)
# In[14]
with sns.axes_style('white'):
g=sns.catplot(x='year',data=planets,aspect=4.0,kind='count',
hue='method',order=range(2001,2015))
g.set_ylabels('Number of Planets Discovered')
For more information on plotting with Seaborn, refer to this url :
Seaborn API
Aerocity Escorts offers the best erotic experiences with hot models. The escorts are well-trained in every way of eroticism and can be made available 24/7. So, now book with us and let us help you with fulfilling your intimate desires and sexual fantasies.
Aerocity Escorts
Aerocity Escorts Service
Escorts in Aerocity
Aerocity Escort
Aerocity Escort Service
Escort in Aerocity
Escorts Service in Aerocity
Escort Service in Aerocity
Escorts Service Aerocity
Escort Service Aerocity
좋은 글이네요. 공유해주셔서 감사합니다.