Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu: A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32(1): 4-24 (2019).
Josephine M. Thomas, Alice Moallemy-Oureh, Silvia Beddar-Wiesing, Clara Holzhüter:Graph Neural Networks Designed for Different Graph Types: A Survey. CoRR abs/2204.03080 (2022)
John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, Eunyee Koh: Attention Models in Graphs: A Survey. ACM Trans. Knowl. Discov. Data 13(6): 62:1-62:25 (2019)
Li Y, Tarlow D, Brockschmidt M, Zemel R. 2015c. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017); PMLR: Sydney, NSW, Australia, 2017; Vol. 70, Proceedings of Machine Learning Research, pp. 1263–1272.
Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2019. Learning to represent the evolution of dynamic graphs with recurrent models. In Proceedings of the World Wide Web Conference. 301–307
Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (SIGKDD 2016); Association for Computing Machinery: New York, NY, USA, 2016; KDD ’16, p. 1225–1234. https://doi.org/10.1145/2939672.2939753.
Tu, K.; Cui, P.; Wang, X.; Wang, F.; Zhu, W. Structural Deep Embedding for Hyper-Networks. In Proceedings of the 32nd Conference on Artificial Intelligence (AAAI 2018); AAAI Press: New Orleans, Louisiana, USA, 2018; pp. 426–433.
Khoshraftar, S.; Mahdavi, S.; An, A.; Hu, Y.; Liu, J. Dynamic Graph Embedding via LSTM History Tracking. In Proceedings of the International Conference on Data Science and Advanced Analytics (DSAA 2019); IEEE: Washington, DC, USA, 2019; pp. 119–127. https://doi.org/10.1109/DSAA.2019.00026.
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. In Proceedings of the 2nd International Conference on Learning Representations (ICLR 2014).
Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NeurIPS 2016); , 2016; pp. 3837–3845.
Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017); OpenReview.net: Toulon, France, 2017
Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems (NIPS 2017); , 2017; pp. 1024–1034
Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018); OpenReview.net: Vancouver, BC, Canada, 2018
Chiang, W.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining (KDD 2019); ACM: Anchorage, Alaska, USA, 2019; pp. 257–266. https://doi.org/10.1145/3292500.3330925.
Li, G.; Xiong, C.; Thabet, A.K.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. CoRR 2020, abs/2006.07739 [2006.07739].
Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna: GraphSAINT: Graph Sampling Based Inductive Learning Method. ICLR 2020
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th International Conference on Machine Learning (ICML 2020); PMLR: Virtual Event, 2020; Vol. 119, Proceedings of Machine Learning Research, pp. 1725–1735
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio: Graph Attention Networks. CoRR abs/1710.10903 (2017)
Yang Ye, Shihao Ji: Sparse Graph Attention Networks. IEEE Trans. Knowl. Data Eng. 35(1): 905-916 (2023)
Haonan, L.; Huang, S.H.; Ye, T.; Xiuyan, G. Graph Star Net for Generalized Multi-Task Learning. arXiv e-prints 2019, p.arXiv:1906.12330, [arXiv:cs.SI/1906.12330].
Kim, D.; Oh, A. How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision. In Proceedings of the 9th International Conference on Learning Representations (ICLR 2021); OpenReview.net: Virtual Event, Austria, 2021
Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous Graph Attention Network. In Proceedings of the World Wide Web Conference (WWW 2019); ACM: San Francisco, CA, USA, 2019; pp. 2022–2032. https://doi.org/10.1145/3308558.3313562.
Wang, G.; Ying, R.; Huang, J.; Leskovec, J. Improving Graph Attention Networks with Large Margin-based Constraints. CoRR 2254 2019, abs/1910.11945, [1910.11945].
Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations. Advances in Neural Information Processing Systems, 34, 2021.
Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.
Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. arXiv preprint arXiv:2110.02910, 2021.
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, Martin Grohe: Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI 2019: 4602-4609
Hualei Yu, Jinliang Yuan, Yirong Yao, Chongjun Wang: Not all edges are peers: Accurate structure-aware graph pooling networks. Neural Networks 156: 58-66 (2022)
Juan Shu, Bowei Xi, Yu Li, Fan Wu, Charles A. Kamhoua, Jianzhu Ma: Understanding Dropout for Graph Neural Networks. WWW (Companion Volume) 2022: 1128-1138
Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. CoRR 2016, abs/1611.07308, [1611.07308].
Santos, L.D.; Piwowarski, B.; Gallinari, P. Multilabel Classification on Heterogeneous Graphs with Gaussian Embeddings. In Proceedings of the Machine Learning and Knowledge Discovery in Databases European Conference (ECML PKDD 2016); Springer: Riva del Garda, Italy, 2016; Vol. 9852, Lecture Notes in Computer Science, pp. 606–622. https://doi.org/10.1007/978-3-319-46227-138
Zhu, D.; Cui, P.; Wang, D.; Zhu, W. Deep Variational Network Embedding in Wasserstein Space. In Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining (KDD 2018); Guo, Y.; Farooq, F., Eds.; ACM: London, UK, 2018; pp. 2827–2836. https://doi.org/10.1145/3219819.3220052
Shi, Y.; Huang, Z.; Feng, S.; Zhong, H.; Wang, W.; Sun, Y. Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In Proceedings of the Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021); Zhou, Z., Ed.; ijcai.org: Virtual Event / Montreal, Canada, 2021; pp. 1548–1554. https://doi.org/10.24963/ijcai.2021/214
Lin, K.; Wang, L.; Liu, Z. Mesh Graphormer. In Proceedings of the International Conference on Computer Vision (ICCV 2021); IEEE: Montreal, QC, Canada, 2021; pp. 12919–12928. https://doi.org/10.1109/ICCV48922.2021.01270
Nguyen, D.Q.; Nguyen, T.D.; Phung, D. Universal Graph Transformer Self-Attention Networks. In Proceedings of the Companion Proceedings of the Web Conference 2022; Association for Computing Machinery: New York, NY, USA, 2022; WWW ’22, p. 193–196. https://doi.org/10.1145/3487553.3524258
Dexiong Chen, Leslie O'Bray, Karsten M. Borgwardt: Structure-Aware Transformer for Graph Representation Learning. ICML 2022: 3469-3489
Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, Seunghoon Hong: Pure Transformers are Powerful Graph Learners. CoRR abs/2207.02505 (2022)
Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu: Do Transformers Really Perform Badly for Graph Representation? NeurIPS 2021: 28877-28888
좋은 정보 감사합니다