Lecture 1: Probability and Counting

피망이·2023년 8월 16일
0
post-thumbnail

History of probability

  • Mosteller-Wallace, The Federalist Papers

  • Goverment : IQSS

  • Finace : STAT 123

  • Gambling : Fermat-Pascal 1650's

  • Life : Statistics is the logic of uncertainty

Sample Space 표본 공간

  • A sample space is the set of all possible outcomes of an experiment.

  • An event is a subset of the sample space.

  • 통계학은 때로, 직관에 반하는 일 중 하나이므로 엄밀한 수학적 정의가 필요하다.

  • 어떠한 사건을 표본 공간에 대한 특정 집합으로 보는 연습이 되어야 한다.

  • Naive definition of probability

    P(A)=#  of  favorable  outcomes#  of  possible  outcomesP(A) = \frac{\#\;of\;favorable\;outcomes}{\#\;of\;possible\;outcomes}
  • Assumes : all outcomes equally likely finite sample space.

    • ex. Dice

Counting

  • Multiplication Rule 곱셈 규칙
    : If you have experiment with n1n_1 possible outcomes, and for each outcome of 1st experiment ther are outcomes for 2nd expt ..., for each there are nrn_r outcomes for rrth expt, then n1n_1, n2n_2, nrn_r overall possible outcomes.
    • ex1. Ice cream : 2 corns and 3 flavors = 6 choices
    • ex2. Prob. of full house in poker, 5 cards hand
  • Binomial coefficient 이항 계수

    (nk)=n!(nk)!  k!,  0  if  k  >  n\begin{pmatrix}n\\k\\ \end{pmatrix} = \frac{n!}{(n-k)!\;k!}, \;0\;if\;k\;>\;n
  • # subsets of size k, of group of n people

    n(n1)(n2)...(nk+1)k!=n!(nk)!  k!\frac{n * (n-1) * (n-2) ... (n-k+1)}{k!} = \frac{n!}{(n-k)!\;k!}

Sampling table : choose k objects out of n.

order matterorder doesn't matter
replacenkn^k(n+k1k)\begin{pmatrix}n+k-1\\k\\ \end{pmatrix}
don't replacen(n1)...(nk+1)n * (n-1) ... (n-k+1)(nk)\begin{pmatrix}n\\k\\ \end{pmatrix}

profile
물리학 전공자의 프로그래밍 도전기

1개의 댓글

comment-user-thumbnail
2023년 8월 16일

좋은 글 감사합니다.

답글 달기