Lecture 2: Story Proofs, Axioms of Probability

피망이·2023년 10월 19일
0
post-thumbnail

Tips for homework

  • Labling people, object, etc. -> 1, 2, ... n

    : 10 people, split into team of 6, team of 4 => (104)\begin{pmatrix}10\\4\\ \end{pmatrix} = (106)\begin{pmatrix}10\\6\\ \end{pmatrix}
    : 2 teams of 5 => (105)\begin{pmatrix}10\\5\\ \end{pmatrix} //2

  • Pick k times from set of n objects, where order doesn't matter, (n+k1k)\begin{pmatrix}n+k-1\\k\\ \end{pmatrix} ways.

    • Extreme cases

      : k = 0 => (n10)\begin{pmatrix}n-1\\0\\ \end{pmatrix} = 1 not 0

      : k = 1 => (n1)\begin{pmatrix}n\\1\\ \end{pmatrix} = n

    • simplest non trivial example

      : n = 2 => (k+1k)\begin{pmatrix}k+1\\k\\ \end{pmatrix} = (k+11)\begin{pmatrix}k+1\\1\\ \end{pmatrix} = k+1 -> if k = 7) 8

      ex. 2 boxes : | o o o | | o o o o | (# of dots is in {0(not in), 1, ..., 7(all in)})

  • Equiv : how many ways are there to put k indistinguishable particles into n distinguishable boxes?
    • n = 4, k = 6 : | o o o | | - | | o o | | o |

      -> | o o o | | o o | o |
      -> k o's, n-1 |'s : k개의 점 사이에 n-1개의 | 를 넣는 방법!

      => (n+k1k)\begin{pmatrix}n+k-1\\k\\ \end{pmatrix} = (n+k1n1)\begin{pmatrix}n+k-1\\n-1\\ \end{pmatrix}

    • In physics, this could not be distinguishable. Only for God!
      cf. Bose-Einstein condensate

Story Proof by interpretation

  • ex.

    1. (nk)\begin{pmatrix}n\\k\\ \end{pmatrix} = (nnk)\begin{pmatrix}n\\n-k\\ \end{pmatrix}

    2. n(n1k1)n\begin{pmatrix}n-1\\k-1\\ \end{pmatrix} = k(nk)k\begin{pmatrix}n\\k\\ \end{pmatrix} : Pick k people out of n, with 1 designated as President

    3. (m+nk)\begin{pmatrix}m+n\\k\\ \end{pmatrix} = j=0k(mj)(nkj)\displaystyle\sum^{k}_{j=0} \begin{pmatrix}m\\j\\ \end{pmatrix} \begin{pmatrix}n\\k-j\\ \end{pmatrix} [Vandermonde]

      ex. | o o o | | o o o o o | : pick j in m, pick k-j of n

Non-naive definition

  • A probability sample consists of S and P, where S is a sample space, and P, a function which takes an event ASA \subseteq S as input, returns P(A)[0,1]P(A) \in [0, 1] as output

    • Axioms (공리)

      1. P(ϕ)=0(impossible),P(S)=1P(ϕ)=0 (impossible) , P(S)=1
      2. P(n=1An)=j=0kP(An)P(\displaystyle⋃^{∞}_{n=1} An)=\displaystyle\sum^{k}_{j=0}P(An) if A1, A2, ... are disjoint (non-overlap) 서로소

profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글