Let , show
If it dependent, represented by
In pebble world, Expectation value is
1) Grouped : ← 그룹별 x에 대해
2) Ungrouped : ← 개별 조약돌 s에 대해
Proof of linearity (discrete case)
← each pabbles in X or Y!
Similarity, if c is const.
Extreme case of dependence : . Then
Story : indep. Bern(p) trials, # failures before the rth success.
Example, there are r=5 success, n=11 failure.
PMF : , for
is # of failures between (j-1)st and jth success:
: failure(p) 중 r번의 success(q)를 기다리는 일!
What's the distribution of first success?
time until 1st success, counting the successes.
Let
It's a very hard exam, there is one of that examples.
Random permutation of 1, 2, ... n, where n \ge 2.
Let I, be indicator r.v. of position j having a local max,
if there is 3214756 here, 4와 5 사이에 큰 수가 주어진다고 하면 확률은 1/3이다. not 1/4 (4: 1/2 * 5: 1/2)!
n-2개의 중간 지점에 1/3의 확률 + 맨 끝 지점에 1/2 확률
간단한 상황 : n=2, [1 2][2 1] →
극단적 상황 : n→∞, →
Get $ , where X is # flips of fair coin until first H, including the successes.
(받는 돈), find E(Y).
bound at $, then
$를 받기 위해서는 40번을 던져야 한다.
Be careful, : This is not linearity!