-
1,2,3,4,5,6→61+2+3+4+5+6=3.5=21+6
- in Gauss raw, n1j=1∑nj=2n+1
-
| 1, 1, 1, 1, 1, | 3, 3, | 5
-
Average of a discrete r.v.X
- E(X)=x∑xP(X=x):(value)(PMF),
summed over x with P(X=x)>0
-
X∼Bern(p)
: E(X)=1P(X=1)+0P(X=0)=p
-
X={1,0,ifAoccursotherwise (indicator r.v.)
-
Then E(X)=P(A) fundamental bridge
→ X를 지시 확률 변수라 생각할 수 있음
-
X∼Bin(n,p)
: E(X)=k=0∑nk(nk)pkqn−k
=k=1∑nn(n−1k−1)pkqn−k
=npk=1∑n(n−1k−1)pk−1qn−k
=npj=0∑n−1(n−1j)pjqn−1−j : j=k−1,k=j+1
⇒np
-
Linearity
: E(X+Y)=E(X)+E(Y)
- even if X, Y are dependent
: E(cX)=cE(X)
-
Redo Bin
-
Ex. 5 card hard, X=(# of aces).
-
Let Xj be indicator of jth card being our ace, 1≤j≤5
-
E(X)=E(X1+...+X5)=E(X1)+...+E(X5)=symmetry5E(X1)
fund. bridge, =5P(1stcardace)=135, even though Xj's are dependent.
-
This gives expected value of any Hypergeometric.
-
Geom(p)
: indep. Bern(p) trials, count # failures before 1st success.
ex. F F F F F S : P(X=5)=q5p
-
Let X∼Geom(p),q=1−p.
-
PMF: P(X=k)=qkp, k∈{0,1,2,...}
valid since k=0∑∞pqk=pk=0∑∞qk=1−qp=1 (기하 급수)
-
X∼Geom(p)
: E(X)=k=0∑∞kpqk
-
cf. k=0∑∞qk=q1 ← derivative
⇒k=0∑∞=kqk−1(1−q)21
⇒k=0∑∞kqk=(1−q)2q
-
Story Proof