Lecture 23: Beta distribution

피망이·2024년 3월 24일
0
post-thumbnail

Beta distribution

  • Beta(a,b)Beta(a, b), a>0,b>0a>0, b>0

    • PDF: f(x)=cxa1(1x)b1f(x) = cx^{a-1}(1-x)^{b-1}, 0<x<10 < x < 1
  • Features

    • "Flexible" family of continuous distributions on (0,1)(0, 1)

      (1) if a=b=1a=b=1, contant function
      (2) if a=2,b=1a=2, b=1, linearly function
      (3) if a=12=ba=\displaystyle \frac{1}{2} =b, power function
      (4) if a=b=2a=b=2, inverse of power function

    • Often used as prior(사전 확률) for parameter in (0,1)(0, 1)

    • 'conjugate prior to Binomial' (사전과 사후가 모두 Beta distribution을 따른다!)

    • connections to other distributions

Conjugate prior for Binomial

  • X  pBin(n,p)X |\; p \sim Bin(n, p),

    • p  Beta(a,b)p \; | Beta(a, b) [prior]
  • Find posterior distributino(사후 분포) p  Xp \; | X

    • f(p  X=k)=P(X=k  p)f(p)P(X=k)f(p \; | X=k) = \displaystyle \frac{P(X=k | \; p) f(p)}{P(X=k)}

      • P(X=k)P(X=k) does not dependent p.

      =(nk)pk(1p)kpa1(1pb1)/P(X=k)= \displaystyle {n \choose k} p^k (1-p)^k \subset p^{a-1} (1-p^{b-1}) / P(X=k)

      pa+k1(1p)b+nk1\propto p^{a+k-1} (1-p)^{b+n-k-1}

      p  XBeta(a+X,b+nX)p \; | X \sim Beta(a+X, b+n-X)

      • XX 성공 횟수, nXn-X 실패 횟수로 취급해보라.
    • if a=b=1a=b=1, 라플라스 계승 법칙을 따른다.

profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글