10.30 가상환경 생성, 주피터 노트북, 4.6 실습

eunjoo·2023년 10월 30일
0

가상환경 생성과 주피터 노트북 실행


파워셀에서 설치한 xgboost를 import가능

4.6 XGBoost 실습


악성1 양성0 비율이 3:2정도

[0]	train-logloss:0.62480	eval-logloss:0.63104
[1]	train-logloss:0.58674	eval-logloss:0.60478
[2]	train-logloss:0.55226	eval-logloss:0.58223
[3]	train-logloss:0.52086	eval-logloss:0.56184
[4]	train-logloss:0.49192	eval-logloss:0.54118
[5]	train-logloss:0.46537	eval-logloss:0.52223
[6]	train-logloss:0.44029	eval-logloss:0.50287
[7]	train-logloss:0.41666	eval-logloss:0.48620
[8]	train-logloss:0.39525	eval-logloss:0.46974
[9]	train-logloss:0.37542	eval-logloss:0.45497
[10]	train-logloss:0.35701	eval-logloss:0.44131
[11]	train-logloss:0.33982	eval-logloss:0.43134
[12]	train-logloss:0.32297	eval-logloss:0.41972
[13]	train-logloss:0.30725	eval-logloss:0.40902
[14]	train-logloss:0.29327	eval-logloss:0.39883
[15]	train-logloss:0.27946	eval-logloss:0.38968
[16]	train-logloss:0.26691	eval-logloss:0.38150
[17]	train-logloss:0.25473	eval-logloss:0.37368
[18]	train-logloss:0.24385	eval-logloss:0.36666
[19]	train-logloss:0.23338	eval-logloss:0.35994
[20]	train-logloss:0.22320	eval-logloss:0.35374
[21]	train-logloss:0.21363	eval-logloss:0.34704
[22]	train-logloss:0.20487	eval-logloss:0.34206
[23]	train-logloss:0.19634	eval-logloss:0.33621
[24]	train-logloss:0.18830	eval-logloss:0.33178
[25]	train-logloss:0.18093	eval-logloss:0.32774
[26]	train-logloss:0.17374	eval-logloss:0.32297
[27]	train-logloss:0.16695	eval-logloss:0.31855
[28]	train-logloss:0.16059	eval-logloss:0.31495
[29]	train-logloss:0.15450	eval-logloss:0.31173
[30]	train-logloss:0.14875	eval-logloss:0.30735
[31]	train-logloss:0.14329	eval-logloss:0.30463
[32]	train-logloss:0.13807	eval-logloss:0.30242
[33]	train-logloss:0.13325	eval-logloss:0.29922
[34]	train-logloss:0.12864	eval-logloss:0.29722
[35]	train-logloss:0.12429	eval-logloss:0.29540
[36]	train-logloss:0.12000	eval-logloss:0.29300
[37]	train-logloss:0.11581	eval-logloss:0.29010
[38]	train-logloss:0.11210	eval-logloss:0.28883
[39]	train-logloss:0.10838	eval-logloss:0.28769
[40]	train-logloss:0.10481	eval-logloss:0.28574
[41]	train-logloss:0.10160	eval-logloss:0.28434
[42]	train-logloss:0.09832	eval-logloss:0.28226
[43]	train-logloss:0.09534	eval-logloss:0.28006
[44]	train-logloss:0.09249	eval-logloss:0.27854
[45]	train-logloss:0.08972	eval-logloss:0.27747
[46]	train-logloss:0.08700	eval-logloss:0.27654
[47]	train-logloss:0.08461	eval-logloss:0.27598
[48]	train-logloss:0.08225	eval-logloss:0.27415
[49]	train-logloss:0.08001	eval-logloss:0.27245
[50]	train-logloss:0.07784	eval-logloss:0.27104
[51]	train-logloss:0.07578	eval-logloss:0.26958
[52]	train-logloss:0.07384	eval-logloss:0.26869
[53]	train-logloss:0.07196	eval-logloss:0.26760
[54]	train-logloss:0.07021	eval-logloss:0.26661
[55]	train-logloss:0.06833	eval-logloss:0.26680
[56]	train-logloss:0.06671	eval-logloss:0.26517
[57]	train-logloss:0.06519	eval-logloss:0.26412
[58]	train-logloss:0.06368	eval-logloss:0.26444
[59]	train-logloss:0.06202	eval-logloss:0.26434
[60]	train-logloss:0.06048	eval-logloss:0.26208
[61]	train-logloss:0.05898	eval-logloss:0.26139
[62]	train-logloss:0.05756	eval-logloss:0.26155
[63]	train-logloss:0.05614	eval-logloss:0.26114
[64]	train-logloss:0.05486	eval-logloss:0.25973
[65]	train-logloss:0.05372	eval-logloss:0.25878
[66]	train-logloss:0.05263	eval-logloss:0.25758
[67]	train-logloss:0.05140	eval-logloss:0.25664
[68]	train-logloss:0.05019	eval-logloss:0.25625
[69]	train-logloss:0.04910	eval-logloss:0.25593
[70]	train-logloss:0.04806	eval-logloss:0.25438
[71]	train-logloss:0.04704	eval-logloss:0.25373
[72]	train-logloss:0.04606	eval-logloss:0.25411
[73]	train-logloss:0.04514	eval-logloss:0.25316
[74]	train-logloss:0.04435	eval-logloss:0.25248
[75]	train-logloss:0.04347	eval-logloss:0.25271
[76]	train-logloss:0.04260	eval-logloss:0.25282
[77]	train-logloss:0.04178	eval-logloss:0.25165
[78]	train-logloss:0.04099	eval-logloss:0.25181
[79]	train-logloss:0.04022	eval-logloss:0.25210
[80]	train-logloss:0.03942	eval-logloss:0.25194
[81]	train-logloss:0.03875	eval-logloss:0.25254
[82]	train-logloss:0.03799	eval-logloss:0.25264
[83]	train-logloss:0.03727	eval-logloss:0.25280
[84]	train-logloss:0.03657	eval-logloss:0.25281
[85]	train-logloss:0.03586	eval-logloss:0.25219
[86]	train-logloss:0.03530	eval-logloss:0.25288
[87]	train-logloss:0.03464	eval-logloss:0.25226
[88]	train-logloss:0.03401	eval-logloss:0.25167
[89]	train-logloss:0.03347	eval-logloss:0.25258
[90]	train-logloss:0.03297	eval-logloss:0.25331
[91]	train-logloss:0.03240	eval-logloss:0.25373
[92]	train-logloss:0.03184	eval-logloss:0.25323
[93]	train-logloss:0.03136	eval-logloss:0.25240
[94]	train-logloss:0.03086	eval-logloss:0.25324
[95]	train-logloss:0.03035	eval-logloss:0.25280
[96]	train-logloss:0.02985	eval-logloss:0.25215
[97]	train-logloss:0.02937	eval-logloss:0.25179
[98]	train-logloss:0.02892	eval-logloss:0.25143
[99]	train-logloss:0.02853	eval-logloss:0.25180
[100]	train-logloss:0.02810	eval-logloss:0.25151
[101]	train-logloss:0.02769	eval-logloss:0.25158
[102]	train-logloss:0.02729	eval-logloss:0.25130
[103]	train-logloss:0.02689	eval-logloss:0.25094
[104]	train-logloss:0.02654	eval-logloss:0.25054
[105]	train-logloss:0.02617	eval-logloss:0.25030
[106]	train-logloss:0.02580	eval-logloss:0.24850
[107]	train-logloss:0.02545	eval-logloss:0.24829
[108]	train-logloss:0.02509	eval-logloss:0.24828
[109]	train-logloss:0.02475	eval-logloss:0.24881
[110]	train-logloss:0.02443	eval-logloss:0.24912
[111]	train-logloss:0.02405	eval-logloss:0.24791
[112]	train-logloss:0.02374	eval-logloss:0.24846
[113]	train-logloss:0.02341	eval-logloss:0.24931
[114]	train-logloss:0.02314	eval-logloss:0.24832
[115]	train-logloss:0.02286	eval-logloss:0.24889
[116]	train-logloss:0.02255	eval-logloss:0.24866
[117]	train-logloss:0.02227	eval-logloss:0.24925
[118]	train-logloss:0.02197	eval-logloss:0.24679
[119]	train-logloss:0.02172	eval-logloss:0.24787
[120]	train-logloss:0.02141	eval-logloss:0.24846
[121]	train-logloss:0.02112	eval-logloss:0.24683
[122]	train-logloss:0.02088	eval-logloss:0.24650
[123]	train-logloss:0.02061	eval-logloss:0.24497
[124]	train-logloss:0.02037	eval-logloss:0.24529
[125]	train-logloss:0.02012	eval-logloss:0.24516
[126]	train-logloss:0.01987	eval-logloss:0.24576
[127]	train-logloss:0.01967	eval-logloss:0.24576
[128]	train-logloss:0.01943	eval-logloss:0.24563
[129]	train-logloss:0.01922	eval-logloss:0.24533
[130]	train-logloss:0.01900	eval-logloss:0.24591
[131]	train-logloss:0.01881	eval-logloss:0.24593
[132]	train-logloss:0.01858	eval-logloss:0.24582
[133]	train-logloss:0.01839	eval-logloss:0.24619
[134]	train-logloss:0.01824	eval-logloss:0.24631
[135]	train-logloss:0.01805	eval-logloss:0.24669
[136]	train-logloss:0.01785	eval-logloss:0.24660
[137]	train-logloss:0.01770	eval-logloss:0.24584
[138]	train-logloss:0.01753	eval-logloss:0.24465
[139]	train-logloss:0.01734	eval-logloss:0.24458
[140]	train-logloss:0.01720	eval-logloss:0.24385
[141]	train-logloss:0.01703	eval-logloss:0.24422
[142]	train-logloss:0.01690	eval-logloss:0.24423
[143]	train-logloss:0.01673	eval-logloss:0.24408
[144]	train-logloss:0.01655	eval-logloss:0.24381
[145]	train-logloss:0.01641	eval-logloss:0.24311
[146]	train-logloss:0.01629	eval-logloss:0.24322
[147]	train-logloss:0.01614	eval-logloss:0.24360
[148]	train-logloss:0.01597	eval-logloss:0.24328
[149]	train-logloss:0.01582	eval-logloss:0.24314
[150]	train-logloss:0.01571	eval-logloss:0.24315
[151]	train-logloss:0.01556	eval-logloss:0.24289
[152]	train-logloss:0.01537	eval-logloss:0.24363
[153]	train-logloss:0.01523	eval-logloss:0.24404
[154]	train-logloss:0.01510	eval-logloss:0.24383
[155]	train-logloss:0.01493	eval-logloss:0.24435
[156]	train-logloss:0.01478	eval-logloss:0.24425
[157]	train-logloss:0.01467	eval-logloss:0.24361
[158]	train-logloss:0.01455	eval-logloss:0.24294
[159]	train-logloss:0.01440	eval-logloss:0.24340
[160]	train-logloss:0.01428	eval-logloss:0.24323
[161]	train-logloss:0.01417	eval-logloss:0.24310
[162]	train-logloss:0.01409	eval-logloss:0.24247
[163]	train-logloss:0.01393	eval-logloss:0.24311
[164]	train-logloss:0.01380	eval-logloss:0.24269
[165]	train-logloss:0.01368	eval-logloss:0.24268
[166]	train-logloss:0.01360	eval-logloss:0.24242
[167]	train-logloss:0.01345	eval-logloss:0.24306
[168]	train-logloss:0.01335	eval-logloss:0.24220
[169]	train-logloss:0.01328	eval-logloss:0.24116
[170]	train-logloss:0.01317	eval-logloss:0.24117
[171]	train-logloss:0.01308	eval-logloss:0.24126
[172]	train-logloss:0.01299	eval-logloss:0.24046
[173]	train-logloss:0.01292	eval-logloss:0.23993
[174]	train-logloss:0.01284	eval-logloss:0.23985
[175]	train-logloss:0.01275	eval-logloss:0.23994
[176]	train-logloss:0.01268	eval-logloss:0.23986
[177]	train-logloss:0.01260	eval-logloss:0.23996
[178]	train-logloss:0.01253	eval-logloss:0.23943
[179]	train-logloss:0.01243	eval-logloss:0.23847
[180]	train-logloss:0.01236	eval-logloss:0.23842
[181]	train-logloss:0.01226	eval-logloss:0.23885
[182]	train-logloss:0.01220	eval-logloss:0.23828
[183]	train-logloss:0.01214	eval-logloss:0.23892
[184]	train-logloss:0.01205	eval-logloss:0.23804
[185]	train-logloss:0.01198	eval-logloss:0.23799
[186]	train-logloss:0.01191	eval-logloss:0.23809
[187]	train-logloss:0.01185	eval-logloss:0.23752
[188]	train-logloss:0.01176	eval-logloss:0.23662
[189]	train-logloss:0.01170	eval-logloss:0.23659
[190]	train-logloss:0.01163	eval-logloss:0.23668
[191]	train-logloss:0.01157	eval-logloss:0.23732
[192]	train-logloss:0.01152	eval-logloss:0.23726
[193]	train-logloss:0.01146	eval-logloss:0.23722
[194]	train-logloss:0.01141	eval-logloss:0.23715
[195]	train-logloss:0.01136	eval-logloss:0.23661
[196]	train-logloss:0.01128	eval-logloss:0.23673
[197]	train-logloss:0.01126	eval-logloss:0.23651
[198]	train-logloss:0.01120	eval-logloss:0.23628
[199]	train-logloss:0.01113	eval-logloss:0.23641
[200]	train-logloss:0.01108	eval-logloss:0.23554
[201]	train-logloss:0.01103	eval-logloss:0.23533
[202]	train-logloss:0.01097	eval-logloss:0.23543
[203]	train-logloss:0.01091	eval-logloss:0.23546
[204]	train-logloss:0.01086	eval-logloss:0.23588
[205]	train-logloss:0.01079	eval-logloss:0.23600
[206]	train-logloss:0.01074	eval-logloss:0.23578
[207]	train-logloss:0.01069	eval-logloss:0.23597
[208]	train-logloss:0.01064	eval-logloss:0.23601
[209]	train-logloss:0.01058	eval-logloss:0.23613
[210]	train-logloss:0.01054	eval-logloss:0.23592
[211]	train-logloss:0.01047	eval-logloss:0.23605
[212]	train-logloss:0.01045	eval-logloss:0.23586
[213]	train-logloss:0.01041	eval-logloss:0.23626
[214]	train-logloss:0.01036	eval-logloss:0.23646
[215]	train-logloss:0.01031	eval-logloss:0.23649
[216]	train-logloss:0.01026	eval-logloss:0.23697
[217]	train-logloss:0.01024	eval-logloss:0.23679
[218]	train-logloss:0.01019	eval-logloss:0.23689
[219]	train-logloss:0.01014	eval-logloss:0.23693
[220]	train-logloss:0.01011	eval-logloss:0.23714
[221]	train-logloss:0.01006	eval-logloss:0.23732
[222]	train-logloss:0.01004	eval-logloss:0.23714
[223]	train-logloss:0.01001	eval-logloss:0.23736
[224]	train-logloss:0.00999	eval-logloss:0.23711
[225]	train-logloss:0.00997	eval-logloss:0.23703
[226]	train-logloss:0.00994	eval-logloss:0.23757
[227]	train-logloss:0.00992	eval-logloss:0.23740
[228]	train-logloss:0.00986	eval-logloss:0.23673
[229]	train-logloss:0.00984	eval-logloss:0.23649
[230]	train-logloss:0.00981	eval-logloss:0.23670
[231]	train-logloss:0.00979	eval-logloss:0.23653
[232]	train-logloss:0.00975	eval-logloss:0.23671
[233]	train-logloss:0.00971	eval-logloss:0.23674
[234]	train-logloss:0.00968	eval-logloss:0.23696
[235]	train-logloss:0.00966	eval-logloss:0.23673
[236]	train-logloss:0.00964	eval-logloss:0.23656
[237]	train-logloss:0.00961	eval-logloss:0.23708
[238]	train-logloss:0.00957	eval-logloss:0.23764
[239]	train-logloss:0.00954	eval-logloss:0.23766
[240]	train-logloss:0.00949	eval-logloss:0.23778
[241]	train-logloss:0.00948	eval-logloss:0.23775
[242]	train-logloss:0.00945	eval-logloss:0.23796
[243]	train-logloss:0.00943	eval-logloss:0.23780
[244]	train-logloss:0.00941	eval-logloss:0.23827
[245]	train-logloss:0.00940	eval-logloss:0.23819
[246]	train-logloss:0.00937	eval-logloss:0.23840
[247]	train-logloss:0.00935	eval-logloss:0.23838
[248]	train-logloss:0.00933	eval-logloss:0.23821
[249]	train-logloss:0.00931	eval-logloss:0.23872
[250]	train-logloss:0.00925	eval-logloss:0.23805

250에서 중단됨

여기까지 실습예정..



실행중인 노트북 중단


0개의 댓글