23.10.24 파이썬 머신러닝 완벽가이드 (2.4 Model Selection 모듈 소개)

eunjoo·2023년 10월 24일
0

https://github.com/wikibook/pymlrev2에서 code 복사

Anaconda Prompt에서 git clone https://github.com/wikibook/pymlrev2.git

가상환경 만들기
conda env list

conda create -n pyml python=3.8
conda activate pyml
<<(pyml) C:\Users\SBA>> -> pyml 가상환경으로 들어옴

pip install numpy pandas matplotlib seaborn scikit-learn notebook 필요한 것 설치

jupyter에서 pymlrev2 찾기


2.4 Model Selection 모듈 소개

2.4 Model Selection 소개

학습/테스트 데이터 셋 분리 – train_test_split()

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
iris = load_iris()
dt_clf = DecisionTreeClassifier()
train_data = iris.data
train_label = iris.target
dt_clf.fit(train_data, train_label)
#학습 데이터 셋으로 예측 수행
pred = dt_clf.predict(train_data)
print('예측 정확도:',accuracy_score(train_label,pred))

예측 정확도: 1.0

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
dt_clf = DecisionTreeClassifier( )
iris_data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,test_size=0.3, random_state=121)      
dt_clf.fit(X_train, y_train)
pred = dt_clf.predict(X_test)
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test,pred))

예측 정확도: 0.9556

교차 검증

  • K 폴드
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
import numpy as np
iris = load_iris()
features = iris.data
label = iris.target
dt_clf = DecisionTreeClassifier(random_state=156)
# 5개의 폴드 세트로 분리하는 KFold 객체와 폴드 세트별 정확도를 담을 리스트 객체 생성.
kfold = KFold(n_splits=5)
cv_accuracy = []
print('붓꽃 데이터 세트 크기:',features.shape[0])

붓꽃 데이터 세트 크기: 150

n_iter = 0
# KFold객체의 split( ) 호출하면 폴드 별 학습용, 검증용 테스트의 로우 인덱스를 array로 반환  
for train_index, test_index  in kfold.split(features):
    # kfold.split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
    X_train, X_test = features[train_index], features[test_index]
    y_train, y_test = label[train_index], label[test_index]
    #학습 및 예측 
    dt_clf.fit(X_train , y_train)    
    pred = dt_clf.predict(X_test)
    n_iter += 1
    # 반복 시 마다 정확도 측정 
    accuracy = np.round(accuracy_score(y_test,pred), 4)
    train_size = X_train.shape[0]
    test_size = X_test.shape[0]
    print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
          .format(n_iter, accuracy, train_size, test_size))
    print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
    cv_accuracy.append(accuracy)
# 개별 iteration별 정확도를 합하여 평균 정확도 계산 
print('\n## 평균 검증 정확도:', np.mean(cv_accuracy))
#1 교차 검증 정확도 :1.0, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#1 검증 세트 인덱스:[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29]
#2 교차 검증 정확도 :0.9667, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#2 검증 세트 인덱스:[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 54 55 56 57 58 59]
#3 교차 검증 정확도 :0.8667, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#3 검증 세트 인덱스:[60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 84 85 86 87 88 89]
#4 교차 검증 정확도 :0.9333, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#4 검증 세트 인덱스:[ 90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107
 108 109 110 111 112 113 114 115 116 117 118 119]
#5 교차 검증 정확도 :0.7333, 학습 데이터 크기: 120, 검증 데이터 크기: 30
#5 검증 세트 인덱스:[120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 138 139 140 141 142 143 144 145 146 147 148 149]
## 평균 검증 정확도: 0.9
  • Stratified K 폴드
import pandas as pd
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['label']=iris.target
iris_df['label'].value_counts()

label
0 50
1 50
2 50
Name: count, dtype: int64

kfold = KFold(n_splits=3)
# kfold.split(X)는 폴드 세트를 3번 반복할 때마다 달라지는 학습/테스트 용 데이터 로우 인덱스 번호 반환. 
n_iter =0
for train_index, test_index  in kfold.split(iris_df):
    n_iter += 1
    label_train= iris_df['label'].iloc[train_index]
    label_test= iris_df['label'].iloc[test_index]
    print('## 교차 검증: {0}'.format(n_iter))
    print('학습 레이블 데이터 분포:\n', label_train.value_counts())
    print('검증 레이블 데이터 분포:\n', label_test.value_counts())
## 교차 검증: 1
학습 레이블 데이터 분포:
 label
1    50
2    50
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
0    50
Name: count, dtype: int64
## 교차 검증: 2
학습 레이블 데이터 분포:
 label
0    50
2    50
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
1    50
Name: count, dtype: int64
## 교차 검증: 3
학습 레이블 데이터 분포:
 label
0    50
1    50
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
2    50
Name: count, dtype: int64
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=3)
n_iter=0
for train_index, test_index in skf.split(iris_df, iris_df['label']):
    n_iter += 1
    label_train= iris_df['label'].iloc[train_index]
    label_test= iris_df['label'].iloc[test_index]
    print('## 교차 검증: {0}'.format(n_iter))
    print('학습 레이블 데이터 분포:\n', label_train.value_counts())
    print('검증 레이블 데이터 분포:\n', label_test.value_counts())
## 교차 검증: 1
학습 레이블 데이터 분포:
 label
2    34
0    33
1    33
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
0    17
1    17
2    16
Name: count, dtype: int64
## 교차 검증: 2
학습 레이블 데이터 분포:
 label
1    34
0    33
2    33
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
0    17
2    17
1    16
Name: count, dtype: int64
## 교차 검증: 3
학습 레이블 데이터 분포:
 label
0    34
1    33
2    33
Name: count, dtype: int64
검증 레이블 데이터 분포:
 label
1    17
2    17
0    16
Name: count, dtype: int64
dt_clf = DecisionTreeClassifier(random_state=156)
skfold = StratifiedKFold(n_splits=3)
n_iter=0
cv_accuracy=[]
# StratifiedKFold의 split( ) 호출시 반드시 레이블 데이터 셋도 추가 입력 필요  
for train_index, test_index  in skfold.split(features, label):
    # split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
    X_train, X_test = features[train_index], features[test_index]
    y_train, y_test = label[train_index], label[test_index]
    #학습 및 예측 
    dt_clf.fit(X_train , y_train)    
    pred = dt_clf.predict(X_test)
# 반복 시 마다 정확도 측정 
    n_iter += 1
    accuracy = np.round(accuracy_score(y_test,pred), 4)
    train_size = X_train.shape[0]
    test_size = X_test.shape[0]
    print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
          .format(n_iter, accuracy, train_size, test_size))
    print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
    cv_accuracy.append(accuracy)
# 교차 검증별 정확도 및 평균 정확도 계산 
print('\n## 교차 검증별 정확도:',np.round(cv_accuracy, 4))
print('## 평균 검증 정확도:', np.round(np.mean(cv_accuracy), 4))
결과
#1 교차 검증 정확도 :0.98, 학습 데이터 크기: 100, 검증 데이터 크기: 50
#1 검증 세트 인덱스:[  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  50
  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66 100 101
 102 103 104 105 106 107 108 109 110 111 112 113 114 115]
#2 교차 검증 정확도 :0.94, 학습 데이터 크기: 100, 검증 데이터 크기: 50
#2 검증 세트 인덱스:[ 17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  67
  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82 116 117 118
 119 120 121 122 123 124 125 126 127 128 129 130 131 132]
#3 교차 검증 정확도 :0.98, 학습 데이터 크기: 100, 검증 데이터 크기: 50
#3 검증 세트 인덱스:[ 34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  83  84
  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 133 134 135
 136 137 138 139 140 141 142 143 144 145 146 147 148 149]
## 교차 검증별 정확도: [0.98 0.94 0.98]
## 평균 검증 정확도: 0.9667
  • cross_val_score( )
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score , cross_validate
from sklearn.datasets import load_iris
iris_data = load_iris()
dt_clf = DecisionTreeClassifier(random_state=156)
data = iris_data.data
label = iris_data.target
# 성능 지표는 정확도(accuracy) , 교차 검증 세트는 3개 
scores = cross_val_score(dt_clf , data , label , scoring='accuracy',cv=3)
print('교차 검증별 정확도:',np.round(scores, 4))
print('평균 검증 정확도:', np.round(np.mean(scores), 4))

교차 검증별 정확도: [0.98 0.94 0.98]
평균 검증 정확도: 0.9667

  • GridSearchCV
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
# 데이터를 로딩하고 학습데이타와 테스트 데이터 분리
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,test_size=0.2, random_state=121)
dtree = DecisionTreeClassifier()
### parameter 들을 dictionary 형태로 설정
parameters = {'max_depth':[1,2,3], 'min_samples_split':[2,3]}
import pandas as pd
# param_grid의 하이퍼 파라미터들을 3개의 train, test set fold 로 나누어서 테스트 수행 설정.  
### refit=True 가 default 임. True이면 가장 좋은 파라미터 설정으로 재 학습 시킴. (최적위치에서 출발..) 
grid_dtree = GridSearchCV(dtree, param_grid=parameters, cv=3, refit=True)
# 붓꽃 Train 데이터로 param_grid의 하이퍼 파라미터들을 순차적으로 학습/평가 .
grid_dtree.fit(X_train, y_train)
# GridSearchCV 결과 추출하여 DataFrame으로 변환
scores_df = pd.DataFrame(grid_dtree.cv_results_)
scores_df[['params', 'mean_test_score', 'rank_test_score', \
           'split0_test_score', 'split1_test_score', 'split2_test_score']]

print('GridSearchCV 최적 파라미터:', grid_dtree.best_params_)
print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_dtree.best_score_))

GridSearchCV 최적 파라미터: {'max_depth': 3, 'min_samples_split': 2}
GridSearchCV 최고 정확도: 0.9750

# GridSearchCV의 refit으로 이미 학습이 된 estimator 반환
estimator = grid_dtree.best_estimator_
# GridSearchCV의 best_estimator_는 이미 최적 하이퍼 파라미터로 학습이 됨
pred = estimator.predict(X_test)
print('테스트 데이터 세트 정확도: {0:.4f}'.format(accuracy_score(y_test,pred)))

테스트 데이터 세트 정확도: 0.9667

0개의 댓글