Introduction to DL

1.Introduction to Deep Learning

post-thumbnail

2.Mathematics for Deep Learning

post-thumbnail

3.Architecture Design

post-thumbnail

4.FeedForward Neural Networks

post-thumbnail

5.Backpropagation

post-thumbnail

6.Convolutional Neural Network

post-thumbnail

7.Recurrent Neural Network

post-thumbnail

8.LSTM and GRU

post-thumbnail

9.Autoencoder

post-thumbnail

10.Sequence-to-Sequence and Attention

post-thumbnail

11.Transformer and Self-attention

post-thumbnail

12.Variational Autoencoders

post-thumbnail

13.Generative Adversarial Network

post-thumbnail

14.Hyperparameters in Deep Learning

post-thumbnail

15.Advanced Regularization

post-thumbnail

16.Batch and Layer Normalizations

post-thumbnail

17.Transfer Learning

post-thumbnail