Nerual Graph Collaborative Filtering

투빅스1617 RS·2022년 5월 3일
0

Unit 01 ㅣ Introduction
Unit 02 ㅣ Methodology
Unit 03 ㅣ Experiments
Unit 04 ㅣ Conclusion and Future Work

1. Introduction

1. Introduction - Motivation

  • Two key components in learnable CF models
    • Embedding: which transforms users and items to vectorized representations
    • Interaction modeling: which reconstructs historical interactions based on the embeddings.
      • For example, matrix factorization (MF) directly embeds user/item ID as vector and models user-item interaction with inner product
  • Neural collaborative filtering models replace the MF interaction function of inner product with nonlinear neural networks, and translation-based CF models instead use Euclidean distance metric as the interaction function, among others.

1. Introduction – Problem Statement

  • Not satisfactory embeddings for CF
    • The key reason is that the embedding function lacks an explicit encoding of the crucial collaborative signal, which is latent in user-item interactions to reveal the behavioral similarity between users (or items). Most existing methods build the embedding function with the descriptive features only, without considering the user-item interactions — which are only used to define the objective function for model training .
    • While intuitively useful to integrate user-item interactions into the embedding function, it is non-trivial to do it well. In particular, the scale of interactions can easily reach millions or even larger in real applications, making it difficult to distill the desired collaborative signal.

1. Introduction - Contribution

In this work, we tackle the challenge by exploiting the high-order connectivity from user item interactions, a natural way that encodes collaborative signal in the interaction graph structure.


1. Introduction - Contribution

• We highlight the critical importance of explicitly exploiting the collaborative signal in the embedding function of model-based CF methods.
• We propose NGCF, a new recommendation framework based on graph neural network, which explicitly encodes the collaborative signal in the form of high-order connectivities by performing embedding propagation.
• We conduct empirical studies on three million-size datasets. Extensive results demonstrate the state-of-the-art performance of NGCF and its effectiveness in improving the embedding quality with neural embedding propagation.

2. Methodology

The architecture of Neural Graph Collaborative Filtering Model

  • Embedding Layer
  • Multiple embedding propagation Layers
  • Prediction Layer
  • Concatenation Layer

2.1 Embedding Layer

  • User 𝑢 and item 𝑖 with an embedding vector 𝑒𝑢 ∈ 𝑅𝑑 (𝑒𝑖 ∈ 𝑅𝑑), where 𝑑 denotes the embedding size.
  • In traditional recommender models like MF and neural collaborative filtering, these ID embeddings are directly fed into an interaction layer (or operator) to achieve the prediction score.
  • In contrast, in our NGCF framework, we refine the embeddings by propagating them on the user-item interaction graph. This leads to more effective embeddings for recommendation, since the embedding refinement step explicitly injects collaborative signal into embeddings.

2.2 Embedding Propagation Layers

The message-passing architecture of GNNs in order to capture CF signal along the graph structure and refine the embeddings of users and items.

2.2 Embedding Propagation Layers

In this paper, first-order propagation → high-order propagation is being explained.

  • First-order propagation : Radio waves from the first Embedded Propagation Layer
  • High-order propagation : Radio waves from the second to 𝑙−th Embedded Propagation Layer

2.2.1 First-order Propagation

  • Intuitively, the interacted items provide direct evidence on a user’s preference; analogously, the users that consume an item can be treated as the item’s features and used to measure the collaborative similarity of two items.
  • We build upon this basis to perform embedding propagation between the connected users and items, formulating the process with two major operations: message construction and message aggregation.

2.2.1 First-order Propagation

  • Two major operations : Message construction / Message aggregation.

  • Message construction

2.2.1 First-order Propagation

  • Message Construction
    This makes the message dependent on the affinity between 𝑒𝑖𝑒_𝑖 and 𝑒𝑢𝑒_𝑢, passing more messages from the similar items.
    Following the graph convolutional network , we set 𝑝𝑢𝑖𝑝_{𝑢𝑖} as the graph Laplacian norm 1/(𝑁𝑢𝑁𝑖)1/√(|𝑁_𝑢||𝑁_𝑖|) where 𝑁𝑢𝑁_𝑢 and 𝑁𝑖𝑁_𝑖 denote the first-hop neighbors of user 𝑢 and item 𝑖.

2.2.1 First-order Propagation

  • Message Aggregation
    In this stage, we aggregate the messages propagated from user’s neighborhood to refine user’s representation. Specifically, we define the aggregation function as:

2.2.2 High-order Propagation

  • High-order Propagation
    • With the representations augmented by first-order connectivity modeling, we can stack more embedding propagation layers to explore the high-order connectivity information.
    • Such high-order connectivities are crucial to encode the collaborative signal to estimate the relevance score between a user and item. By stacking 𝑙 embedding propagation layers, a user (and an item) is capable of receiving the messages propagated from its 𝑙-hop neighbors.
    • 𝑒𝑢𝑙𝑒_𝑢^𝑙 : the representation of user 𝑢 In the 𝑙-th step

2.2.2 High-order Propagation

  • High-order Propagation
    𝑒𝑢𝑙𝑒_𝑢^𝑙 : the representation of user 𝑢 In the 𝑙-th step

  • where 𝑊1𝑙𝑊_1^𝑙, 𝑊2𝑙𝑊_2^𝑙 R𝑑𝑙×𝑑𝑙1∈ ℝ^{𝑑_𝑙×𝑑_{𝑙−1}}are the trainable transformation matrices, 𝑑𝑙𝑑_𝑙 is the transformation size.
  • 𝑝𝑢𝑖 is the graph Laplacian norm $1/√|𝑁𝑢||𝑁_𝑖| $ , the coefficient for controling the decay factor on each propagation on edge (𝑢,𝑖).
  • 𝑒𝑖(𝑙1)𝑒_𝑖^{(𝑙−1)} is the item representation generated from the previous message-passing steps, memorizing the messages from its (𝑙1)(𝑙−1)−hop neighbors. It further contributes to the representation of user 𝑢 at layer 𝑙.
  • Analogously, we can obtain the representation for item 𝑖 at the layer 𝑙.

2.2.2 High-order Propagation

2.3 Model Prediction

After propagating with L layers, we obtain multiple representations for user 𝑢 and item 𝑖, namely

  • Since the representations obtained in different layers emphasize the messages passed over different connections, they have different contributions in reflecting user preference.
  • As such, we concatenate them to constitute the final embedding for a user; Using concatenation has been shown quite effectively in a recent work of graph neural networks, which refers to layer-aggregation mechanism.
  • Finally, we conduct the inner product to estimate the user’s preference towards the target item:

2.4 Optimization

  • To learn model parameters, we optimize the pairwise BPR loss considering the relative order between observed and unobserved user-item interactions.
  • We adopt mini-batch Adam to optimize the prediction model and update the model parameters. The objective function is as follows,

2.4.2 Message and Node Dropout

To prevent neural networks from overfitting, we propose to adopt two dropout techniques in NGCF :

  • Message dropout
    • randomly drops out the messages being propagated in High-order connectivity. As such, in the 𝑙-th propagation layer, only partial messages contribute to the refined representations.
    • It endows the representations more robustness against the presence or absence of single connections between users and items.
  • Node dropout
    • randomly block a particular node and discard all its outgoing messages. For the l-th propagation layer, we randomly drop (𝑀+𝑁)𝑝2(𝑀 + 𝑁)𝑝_2 nodes of the Laplacian matrix, where 𝑝2𝑝_2 is the dropout ratio.
    • It focuses on reducing the influences of particular users or items.

3. Experiments

We perform experiments on three real-world datasets to evaluate our proposed method, especially the embedding propagation layer. We aim to answer the following research questions:

  • RQ1: How does NGCF perform as compared with state-of-the-art CF methods?
  • RQ2: How do different hyper-parameter settings (e.g., depth of layer, embedding propagation layer, layer-aggregation mechanism, message dropout, and node dropout) affect NGCF?
  • RQ3: How do the representations benefit from the high-order connectivity?

#
3. Experiments Settings

  • Datasets
  • Evaluation Metrics
    • To evaluate the effectiveness of top-K recommendation and preference ranking
    • Recall@K
    • NDCG@K (By default, we set K = 20.)

3. Experiments

  • RQ1: How does NGCF perform as compared with state-of-the-art CF methods?

  • RQ2: How do different hyper-parameter settings (e.g., depth of layer, embedding propagation layer, layer-aggregation mechanism, message dropout, and node dropout) affect NGCF?

  • RQ3: How do the representations benefit from the high-order connectivity?

4. Conclusion

  • In this work, we explicitly incorporated collaborative signal into the embedding function of model-based CF devising a new framework NGCF, which achieves the target by leveraging high-order connectivities in the user-item integration graph.
  • The key of NGCF is the newly proposed embedding propagation layer, based on which we allow the embeddings of users and items interact with each other to harvest the collaborative signal.
  • Extensive experiments on three real-world datasets demonstrate the rationality and effectiveness of injecting the user-item graph structure into the embedding learning process.

4. Future Work

  • We will further improve NGCF by incorporating the attention mechanism to learn variable weights for neighbors during embedding propagation and for the connectivities of different orders. This will be beneficial to model generalization and interpretability.
  • Moreover, we are interested in exploring the adversarial learning on user/item embedding and the graph structure for enhancing the robustness of NGCF.
profile
투빅스 추천시스템 1617기

5개의 댓글

comment-user-thumbnail
2022년 5월 9일

투빅스 17기 박나윤입니다.

일반적으로 MF은 linear한 방식이므로 user와 item간의 복잡한 관계를 표현하는데 한계가 있다. 반면 Deep Neural Network(DNN)의 multi- layer구조는 non -linear하기 때문에 보다 복잡한 구조를 표현하는데 용이하다. 따라서 논문은 이런 특징에 기반해 MF의 한계를 지적하며, DNN이 어떻게 user와 item간의 관계를 표현해낼 수 있는지 보이고 있다. 논문의 contribution은 다음과 같다.

contributionPermalink

  • DNN에 기반한 Collaborative Filtering 방법 제시(NCF)
  • MF는 NCF의 특별한 케이스가 됨을 증명
  • 다양한 실험을 통한 NCF의 효율성 증명
답글 달기
comment-user-thumbnail
2022년 5월 10일

투빅스 16기 박한나입니다.

  • 기존 CF 모델(MF, NCF 등)이 유저와 아이템 간의 상호작용을 명시적으로 사용하지 않았기에 이를 보완하고자 제안된 모델이 Neural Graph Collaborative Filtering이다.
  • NGCF 모델은 유저와 아이템 간의 관계를 그래프적으로 표현한 High-order connectivity을 고려하여 collaborative signal을 보다 명확히 보내 성능을 향상시켰다.
  • NGCF는 Embedding propagation layer를 이용하여 high order connectivity에서 collaborative signal을 표현한다.
  • Embedding layer에서는 collaborative signal이 반영되지 않은 유저와 아이템 각각의 임베딩을 사용한다.
  • Embedding propagation layer에서는 first-order propagation -> high-order propagation 순으로 설명되는데 first-order propagation은 첫번째 Embedding Propagation Layer에서 발생하는 전파, high-order propagation는 두번째부터 l번째 Embedding Propagation Layer에서 발생하는 전파를 말한다.
  • First-order Propagation의 주요 작용은 message construction과 message aggregation이다.
  • Message construction은 propagation layer에서 전파될 메세지를 생성해내는 과정이고, message aggregation은 유저의 이웃 노드로부터 전파된 메세지를 aggregate하여 유저의 임베딩을 refine한다.
  • High-order propagation는 first-order connectivity에서 변환된 벡터표현으로 high-order connectivity 정보를 탐색하기 위해 더 많은 embedding propagation layer를 stack한다.
  • 오버피팅을 방지하기 위해 message dropout과 node dropout을 사용한다.
답글 달기
comment-user-thumbnail
2022년 5월 10일

투빅스 17기 염제윤입니다.

기존의 cf 모델의 임베딩 아이디어로는 유저의 패턴안의 암시적 신호를 잡아내기에 부족하다. 또한 보통 단순하게 몇개만이 연관되어있는 것들이 아닌 실제로는 더 스케일이 큰 상호작용이 존재한다. 이를 반영하기위해 Nerual Graph를 적용하였다.

Embedding Propagation Layers
간단히 요약해서 설명을 하자면, 해당 노드의 가중치와 주변의 모든 가중치 값들이 다 같이 갱신되면서 학습이 이루어진다. 먼저 가장 근접한 (1개 거리) 것들에 대해 갱신하게 되면 해당 노드는 그 주변의 노드의 정보를 반영했다고 볼 수 있다. 이것을 계속 반복하게 되면 2번 째 갱신 때는 해당 노드와 2개 거리안의 모든 정보를 반영했다고 볼 수 있게 되고 이를 모든 거리에 대해 연산을 진행하게 되면 모든 link에 대한 정보를 반영한 노드가 되었다고 할 수 있다.

이러한 방식을 통해 1개의 거리를 반영한 값, 2개의 거리를 반영한 값.... 을 계속하여 유저의 latent 텐서와 아이템의 텐서를 만든 후 이를 dot product하여 mf matrix처럼 결과를 에측한다.

loss func 은 pairwise BPR loss 를 사용하였고, optimization은 adam을 사용한다.
message와 node에 대해서 dropout을 시행하였는데, message dropout 은 각 유저와 아이템간의 단순링크를 없애므로써 robustness하게 하고, Node dropout은 오버피팅을 방지한다.

답글 달기
comment-user-thumbnail
2022년 5월 11일

투빅스 17기 나다경입니다.

model-based CF모델의 임베딩 함수에서 collaborative signal을 명시적으로 이용해야 함을 강조한다.
graph neural network를 기반으로한 새로운 추천 프레임워크 NGCF를 제안한다.

해당 모델은 임베딩 전파를 수행하면서 high-order connectivities의 형태로 collaborative signal을 명시적으로 인코딩할 수 있다.

100만 개 크기를 가진 3가지 데이터셋에서 경험적인 연구를 실행하여, NGCF가 SOTA모델보다 우수함을 증명하였다.
뿐만 아니라 임베딩 전파를 통한 임베딩의 성능이 개선되었음을 나타내었다.

답글 달기
comment-user-thumbnail
2022년 5월 11일

투빅스 17기 김상윤입니다.
기존 MF방식과 NCF방식의 임베딩 과정에서 user-item의 interaction 정보 반영 부족을 개선하기 위해 그래프 구조를 도입했습니다. 이에 대한 방법으로 High-order connectivity를 제안합니다. 긴 경로를 포함하여 도달하는 경로가 더 많은 item을 더 선호 할 것이라고 가정합니다.
NCF 구조에 Embedding Propagation Layer가 추가된 구조입니다. 해당 Layer를 첫 전파인 First-order Propagation와 그 뒤 전파들인 High-order Propagation으로 나누어 명시합니다. First-order Propagation은 임베딩 벡터 사이의 interaction을 encoding하는 message construction과정과, 이웃 노드로부터 전달된 모든 message를 모아서 refine하는 Message Aggregation과정으로 구성돼 있습니다. aggregation에는 자기 자신에 대한 정보도 포함됩니다. High-order Propagation은 같은 방식으로 이전 단계까지 업데이트 된 interaction embedding 정보를 반영해 Layer를 쌓아 업데이트를 이어갑니다.
오버피팅 방지를 위해 Message Dropout, Node Dropout 방식을 활용합니다.

답글 달기