UCTransNet.py
class DownBlock(nn.Module): -> 그냥 Max Pooling 함.
"""Downscaling with maxpool convolution"""
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super(DownBlock, self).__init__()
self.maxpool = nn.MaxPool2d(2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x):
out = self.maxpool(x)
return self.nConvs(out)
class ConvBatchNorm(nn.Module):
"""(convolution => [BN] => ReLU)"""
def __init__(self, in_channels, out_channels, activation='ReLU'):
super(ConvBatchNorm, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.activation = get_activation(activation)
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
return self.activation(out)
class UCTransNet(nn.Module):
def __init__(self, config,n_channels=3, n_classes=1,img_size=224,vis=False):
super().__init__()
self.vis = vis
self.n_channels = n_channels
self.n_classes = n_classes
in_channels = config.base_channel
self.inc = ConvBatchNorm(n_channels, in_channels)
self.down1 = DownBlock(in_channels, in_channels*2, nb_Conv=2)
self.down2 = DownBlock(in_channels*2, in_channels*4, nb_Conv=2)
self.down3 = DownBlock(in_channels*4, in_channels*8, nb_Conv=2)
self.down4 = DownBlock(in_channels*8, in_channels*8, nb_Conv=2)
self.mtc = ChannelTransformer(config, vis, img_size,
channel_num=[in_channels, in_channels*2, in_channels*4, in_channels*8],
patchSize=config.patch_sizes)
self.up4 = UpBlock_attention(in_channels*16, in_channels*4, nb_Conv=2)
self.up3 = UpBlock_attention(in_channels*8, in_channels*2, nb_Conv=2)
self.up2 = UpBlock_attention(in_channels*4, in_channels, nb_Conv=2)
self.up1 = UpBlock_attention(in_channels*2, in_channels, nb_Conv=2)
self.outc = nn.Conv2d(in_channels, n_classes, kernel_size=(1,1), stride=(1,1))
self.last_activation = nn.Sigmoid()
def forward(self, x):
x = x.float()
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x1,x2,x3,x4,att_weights = self.mtc(x1,x2,x3,x4)
x = self.up4(x5, x4)
x = self.up3(x, x3)
x = self.up2(x, x2)
x = self.up1(x, x1)
if self.n_classes ==1:
logits = self.last_activation(self.outc(x))
else:
logits = self.outc(x)
if self.vis:
return logits, att_weights
else:
return logits
class UpBlock_attention(nn.Module):
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super().__init__()
self.up = nn.Upsample(scale_factor=2)
self.coatt = CCA(F_g=in_channels//2, F_x=in_channels//2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x, skip_x):
up = self.up(x)
skip_x_att = self.coatt(g=up, x=skip_x)
x = torch.cat([skip_x_att, up], dim=1)
return self.nConvs(x)
class CCA(nn.Module):
"""
CCA Block
"""
def __init__(self, F_g, F_x):
super().__init__()
self.mlp_x = nn.Sequential(
Flatten(),
nn.Linear(F_x, F_x))
self.mlp_g = nn.Sequential(
Flatten(),
nn.Linear(F_g, F_x))
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
avg_pool_x = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_x = self.mlp_x(avg_pool_x)
avg_pool_g = F.avg_pool2d( g, (g.size(2), g.size(3)), stride=(g.size(2), g.size(3)))
channel_att_g = self.mlp_g(avg_pool_g)
channel_att_sum = (channel_att_x + channel_att_g)/2.0
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
x_after_channel = x * scale
out = self.relu(x_after_channel)
return out