Tensor and Tensor decompositions

SHIN·2023년 6월 15일
0

1. Tensor

 1.1. Definition

  • An array containing multidimentional elements.
  • N-order or N-way or N-mode tensor is an element of the tensor product of N vector spaces.

 1.2. Examples

  • A first order tensor is a vector, and a second order tensor is a matrix.
  • A Third order tensor isEach index is an element of II vector space, JJ vector space, KK vector space.

2. Notations

  • The order of a tensor : The number of dimensions a.k.a. ways, mods
  • Vectors : Boldface lowercase letters, e.g., a
    - The iith element of a vector a is aia_i.
  • Metrices : Boldface capital letters, e.g., A
    - An element (i,j)(i,j) of a matrix A is aija_{ij}.
  • Tensors : Boldface LaTex letters, e.g., XX
    - An element (i,j,k)(i,j,k) of a tensor XX is denoted by xijkx_{ijk}.
  • The nnth element of a sequence is denoted by a superscript in parentheses.
    e.g. A(n)^{(n)}: nnth matrix in a sequence
  • Fibers : Fixing every index but one
    e.g. A matrix column : mode-1 fiber
         A matrix row : mode-2 fiber
         For a 3-order tensor:
  • Slices : Fixing all but two indices, two-dimentional sections of a tensor.
  • Norm : The norm of a tensor XRI1×I2××INX\in R^{I_1 \times I_2 \times \cdots \times I_N} ,
    denoted by \parallelXX=i1=1I1i2=1I2in=1INxi1i2iN2\parallel = \sqrt{\displaystyle\sum_{i_1=1}^{I_1}\sum_{i_2=1}^{I_2}\cdots\sum_{i_n=1}^{I_N}x^2_{i_1i_2\cdots i_N}}

2.1. Matricization: Transforming a Tensor into a Matrix

  • a.k.a unfolding or flattening, is reordering elements of an N-way Tensor into a matrix.
  • The mode-n matricization of a tensor XRI1×I2××INX\in R^{I_1 \times I_2 \times \cdots \times I_N} is denoted by X(n)X_{(n)} and arranges the mode-n fibers to be the columns of the resulting matrix.
  • Tensor element (i1,i2,,iN)(i_1,i_2,\dots,i_N) maps to matrix element (in,j)(i_n,j), where
    j=1+k=1knN(ik1)Jkj = 1+\displaystyle\sum_{\substack{k=1 \\ k\neq n}}^{N}(i_k-1)J_k    with   Jk=m=1mnk1ImJ_k = \displaystyle\prod_{\substack{m=1\\m\neq n}}^{k-1}I_m

Describing mode-n fibers being the columns of the resulting matrix.

profile
HAPPY the cat

0개의 댓글