๐Ÿน Scikit-learn

๋ฏผ๋‹ฌํŒฝ์ด์šฐ์œ ยท2024๋…„ 7์›” 3์ผ
post-thumbnail

๐Ÿ’ก 1. Scikit-learn

  • ๋Œ€ํ‘œ์ ์ธ ํŒŒ์ด์ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋“ˆ
  • ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ œ๊ณต
  • ๋‹ค์–‘ํ•œ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ์ œ๊ณต
  • ๋จธ์‹ ๋Ÿฌ๋‹ ๊ฒฐ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ๊ธฐ๋Šฅ ์ œ๊ณต
  • BSD ๋ผ์ด์„ ์Šค์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฌด๋ฃŒ๋กœ ์‚ฌ์šฉ ๋ฐ ๋ฐฐํฌ ๊ฐ€๋Šฅ
  • ์‚ฌ์ดํ‚ท๋Ÿฐ ๊ณต์‹ ํ™ˆํŽ˜์ด์ง€

๐Ÿ’ก 2. LinearSVC

  • ํด๋ž˜์Šค๋ฅผ ๊ตฌ๋ถ„์œผ๋กœ ํ•˜๋Š” ๋ถ„๋ฅ˜ ๋ฌธ์ œ์—์„œ ๊ฐ ํด๋ž˜์Šค๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ์„ ์„ ๊ทธ๋ ค์ฃผ๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • ์ง€๋„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ํ•™์Šต ์ „์šฉ ๋ฐ์ดํ„ฐ์™€ ๊ฒฐ๊ณผ ์ „์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์•ผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Œ
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
# ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„
learn_data = [[0,0], [1,0], [0,1], [1,1]] # ๋…๋ฆฝ๋ณ€์ˆ˜
learn_label = [0,0,0,1] # ์ข…์†๋ณ€์ˆ˜
# ๋ชจ๋ธ ๊ฐ์ฒด ์ƒ์„ฑ
svc = LinearSVC()
# ํ•™์Šต
svc.fit(learn_data, learn_label)
# ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์ค€๋น„
test_data = [[0,0], [1,0], [0,1], [1,1]]
# ์˜ˆ์ธก
test_label = svc.predict(test_data)
test_label
> array([0, 0, 0, 1])
# ๊ฒฐ๊ณผ ๊ฒ€์ฆ
print(test_data, '์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ: ', test_label)
print('์ •๋‹ต๋ฅ : ', accuracy_score([0, 0, 0, 1], test_label))
> [[0, 0], [1, 0], [0, 1], [1, 1]] ์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ:  [0 0 0 1]
> ์ •๋‹ต๋ฅ :  1.0
profile
์–ด๋–ป๊ฒŒ ํ–„์Šคํ„ฐ๊ฐ€ ๊ฐœ๋ฐœ์ž

0๊ฐœ์˜ ๋Œ“๊ธ€