Dijkstra's Algorithm
What is Dijkstra's Algorithm?
- 다익스트라 알고리즘 : 그래프에서 두 노트 사이의 가장 짧은 경로를 찾는 알고리즘
- 다익스트라 알고리즘 사용 예
- GPS : 가장 빠른 경로 찾기
- Network Routing : 데이터에 대해 열려 있는 가장 짧은 경로 찾기
- Biology : 사람들 사이에서의 바이러스 확산에 대한 모델링
- Airline tickets : 목적지로 가는 가장 싼 경로 찾기
a Weighted Graph
class WeightedGraph {
constructor() {
this.adjacencyList = {};
}
addVertex(vertex) {
if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}
addEdge(vertex1, vertex2, weight) {
this.adjacencyList[vertex1].push({node: vertex2, weight});
this.adjacencyList[vertex2].push({node: vertex1, weight});
}
}
a Simple Priority Queue
class PriorityQueue {
constructor() {
this.values = [];
}
enqueue(val, priority) {
this.values.push({val, priority});
this.sort();
}
dequeue() {
return this.values.shift();
}
sort() {
this.values.sort((a,b) => a.priority - b.priority);
}
}
Dijkstra's Pseudocode
- 이 함수는 시작 노드와 끝 노드를 인수로 받음
- distances라 불리는 객체를 생성함
- adjacency list에 있는 모든 노드를 키로, Infinity를 값으로 설정함
- 단, 시작 노드의 값은 0으로 설정함
- distance 객체에 값을 설정한 후, priority queue에 Infinity priority를 가진 각 노드를 추가함
- 단, 시작 노드의 priority는 0으로 설정함
- previous라 불리는 객체를 생성함
- adjacency list에 있는 모든 노드를 키로, null을 값으로 설정함
- priority queue에 노드가 존재하는 동안 아래 과정을 반복함
- priority queue에서 노드를 dequeue함
- 뺀 노드가 끝 노드와 같다면, 반복문을 종료함
- 뺀 노드가 끝 노드와 같지 않다면, 그 노드의 adjacency list 안의 모든 노드를 순회함
- 시작 노드로부터의 거리를 계산함
- 계산된 거리가 distances 객체에 현재 저장된 값보다 작으면, distances객체를 더 작은 값으로 업데이트함
- 그 노드를 포함하도록 previous 객체를 업데이트함
- 시작 노드로부터의 총 거리를 가진 노드를 enqueue함
Dijksta's Algorithm Code
class PriorityQueue {
constructor() {
this.values = [];
}
enqueue(val, priority) {
this.values.push({val, priority});
this.sort();
}
dequeue() {
return this.values.shift();
}
sort() {
this.values.sort((a,b) => a.priority - b.priority);
}
}
class WeightedGraph {
constructor() {
this.adjacencyList = {};
}
addVertex(vertex) {
if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}
addEdge(vertex1, vertex2, weight) {
this.adjacencyList[vertex1].push({node: vertex2, weight});
this.adjacencyList[vertex2].push({node: vertex1, weight});
}
Dijkstra(start, finish) {
const nodes = new PriorityQueue();
const distances = {};
const previous = {};
const path = [];
let smallest;
for (let vertex in this.adjacencyList) {
if (vertex === start) {
distances[vertex] = 0;
nodes.enqueue(vertex, 0);
} else {
distances[vertex] = Infinity;
nodes.enqueue(vertex, Infinity);
}
previous[vertex] = null;
}
while (nodes.values.length) {
smallest = nodes.dequeue().val;
if (smallest === finish) {
while(previous[smallest]) {
path.push(smallest);
smallest = previous[smallest];
}
break;
}
if (smallest || distances[smallest] !== Infinity) {
for (let neighbor in this.adjacencyList[smallest]) {
let nextNode = this.adjacencyList[smallest][neighbor];
let candidate = distances[smallest] + nextNode.weight;
let nextNeighbor = nextNode.node;
if (candidate < distances[nextNeighbor]) {
distances[nextNeighbor] = candidate;
previous[nextNeighbor] = smallest;
nodes.enqueue(nextNeighbor, candidate);
}
}
}
}
return path.concat(smallest).reverse();
}
}
const graph = new WeightedGraph()
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addVertex("E");
graph.addVertex("F");
graph.addEdge("A","B", 4);
graph.addEdge("A","C", 2);
graph.addEdge("B","E", 3);
graph.addEdge("C","D", 2);
graph.addEdge("C","F", 4);
graph.addEdge("D","E", 3);
graph.addEdge("D","F", 1);
graph.addEdge("E","F", 1);
graph.Dijkstra("A", "E");
Upgrading the priority queue
- priority queue => priority queue with binary heap
class WeightedGraph {
constructor() {
this.adjacencyList = {};
}
addVertex(vertex){
if(!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}
addEdge(vertex1,vertex2, weight){
this.adjacencyList[vertex1].push({node:vertex2,weight});
this.adjacencyList[vertex2].push({node:vertex1, weight});
}
Dijkstra(start, finish){
const nodes = new PriorityQueue();
const distances = {};
const previous = {};
let path = []
let smallest;
for(let vertex in this.adjacencyList){
if(vertex === start){
distances[vertex] = 0;
nodes.enqueue(vertex, 0);
} else {
distances[vertex] = Infinity;
nodes.enqueue(vertex, Infinity);
}
previous[vertex] = null;
}
while(nodes.values.length){
smallest = nodes.dequeue().val;
if(smallest === finish){
while(previous[smallest]){
path.push(smallest);
smallest = previous[smallest];
}
break;
}
if(smallest || distances[smallest] !== Infinity){
for(let neighbor in this.adjacencyList[smallest]){
let nextNode = this.adjacencyList[smallest][neighbor];
let candidate = distances[smallest] + nextNode.weight;
let nextNeighbor = nextNode.node;
if(candidate < distances[nextNeighbor]){
distances[nextNeighbor] = candidate;
previous[nextNeighbor] = smallest;
nodes.enqueue(nextNeighbor, candidate);
}
}
}
}
return path.concat(smallest).reverse();
}
}
class PriorityQueue {
constructor(){
this.values = [];
}
enqueue(val, priority){
let newNode = new Node(val, priority);
this.values.push(newNode);
this.bubbleUp();
}
bubbleUp(){
let idx = this.values.length - 1;
const element = this.values[idx];
while(idx > 0){
let parentIdx = Math.floor((idx - 1)/2);
let parent = this.values[parentIdx];
if(element.priority >= parent.priority) break;
this.values[parentIdx] = element;
this.values[idx] = parent;
idx = parentIdx;
}
}
dequeue(){
const min = this.values[0];
const end = this.values.pop();
if(this.values.length > 0){
this.values[0] = end;
this.sinkDown();
}
return min;
}
sinkDown(){
let idx = 0;
const length = this.values.length;
const element = this.values[0];
while(true){
let leftChildIdx = 2 * idx + 1;
let rightChildIdx = 2 * idx + 2;
let leftChild,rightChild;
let swap = null;
if(leftChildIdx < length){
leftChild = this.values[leftChildIdx];
if(leftChild.priority < element.priority) {
swap = leftChildIdx;
}
}
if(rightChildIdx < length){
rightChild = this.values[rightChildIdx];
if(
(swap === null && rightChild.priority < element.priority) ||
(swap !== null && rightChild.priority < leftChild.priority)
) {
swap = rightChildIdx;
}
}
if(swap === null) break;
this.values[idx] = this.values[swap];
this.values[swap] = element;
idx = swap;
}
}
}
class Node {
constructor(val, priority){
this.val = val;
this.priority = priority;
}
}
var graph = new WeightedGraph()
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addVertex("E");
graph.addVertex("F");
graph.addEdge("A","B", 4);
graph.addEdge("A","C", 2);
graph.addEdge("B","E", 3);
graph.addEdge("C","D", 2);
graph.addEdge("C","F", 4);
graph.addEdge("D","E", 3);
graph.addEdge("D","F", 1);
graph.addEdge("E","F", 1);
graph.Dijkstra("A", "E");