이진 분류 모델의 평가
Accuracy
Precision
Recall 재현율, sensitivity, TPR(True Positive Ratio)
Fall-out
분류모델: 그 결과에 속할 비율(확률) 반환
threshold
ex. threshold 0.3: 전부 암환자
recall 과 precision은 서로 영향을 줌.
import pandas as pd
white_url = "https://raw.githubusercontent.com/PinkWink/ML_tutorial/master/dataset/winequality-white.csv"
red_url = "https://raw.githubusercontent.com/PinkWink/ML_tutorial/master/dataset/winequality-red.csv"
red_wine = pd.read_csv(red_url, sep=';')
white_wine = pd.read_csv(white_url, sep=';')
red_wine['color'] = 1
white_wine['color'] = 0
wine = pd.concat([red_wine, white_wine])
wine['taste'] = [1. if grade>5 else 0. for grade in wine['quality']]
X = wine.drop(['taste', 'quality'], axis=1)
y = wine['taste']
# DT
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=13)
wine_tree = DecisionTreeClassifier(max_depth=2, random_state=13)
wine_tree.fit(X_train, y_train)
y_pred_tr = wine_tree.predict(X_train)
y_pred_test = wine_tree.predict(X_test)
print('Train Acc: ', accuracy_score(y_train, y_pred_tr))
print('Test Acc: ', accuracy_score(y_test, y_pred_test))
Train Acc: 0.7294593034442948
Test Acc: 0.7161538461538461
# 각 수치 구해보기
from sklearn.metrics import accuracy_score, precision_score
from sklearn.metrics import recall_score, f1_score
from sklearn.metrics import roc_auc_score, roc_curve
print('Accuracy: ', accuracy_score(y_test, y_pred_test))
print('Recall: ', recall_score(y_test, y_pred_test))
print('Precision: ', precision_score(y_test, y_pred_test))
print('AUC score: ', roc_auc_score(y_test, y_pred_test))
print('F1 score: ', f1_score(y_test, y_pred_test))
Accuracy: 0.7161538461538461
Recall: 0.7314702308626975
Precision: 0.8026666666666666
AUC score: 0.7105988470875331
F1 score: 0.7654164017800381
# ROC curve
import matplotlib.pyplot as plt
%matplotlib inline
pred_prob = wine_tree.predict_proba(X_test)[:, 1] # [0일 확률, 1일 확률] 에서 1일 확률 추출
fpr, tpr, thresholds = roc_curve(y_test, pred_prob)
plt.figure(figsize=(10, 8))
plt.plot([0,1], [0,1], 'c', ls='dashed') # 대각선 직선 (0, 0) 부터 (1, 1)
plt.plot(fpr, tpr, 'r')
plt.grid()
plt.show()

z = np.linspace(-10, 10, 100)
sigma = 1/(1+np.exp(-z))
plt.figure(figsize=(12, 8))
plt.plot(z, sigma)
plt.xlabel('$z$', fontsize=25)
plt.ylabel('$\sigma(z)$', fontsize=25)
plt.show()

samples = [1, 7, 9, 16, 36, 39, 45, 45, 46, 48, 51, 100, 101]
tmp_y = [1]*len(samples)
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(12, 4))
plt.scatter(samples, tmp_y)
plt.show()

# IQR
np.percentile(samples, 75) - np.percentile(samples, 25)
# 그리기
q1 = np.percentile(samples, 25)
q2 = np.median(samples)
q3 = np.percentile(samples, 75)
iqr = q3 - q1
upper_fence = q3 + iqr*1.5
lower_fence = q1 - iqr*1.5
# box plot 그리기
plt.figure(figsize=(12, 4))
plt.scatter(samples, tmp_y)
plt.axvline(x=q1, color='black')
plt.axvline(x=q2, color='red')
plt.axvline(x=q3, color='black')
plt.axvline(x=upper_fence, color='black', ls='dashed')
plt.axvline(x=lower_fence, color='black', ls='dashed')
plt.grid()
plt.show()

# framework 으로 그리기
import seaborn as sns
plt.figure(figsize=(12, 4))
sns.boxplot(x=samples)
plt.grid()
plt.show()
