타겟값 또는 결정 값은 지도학습 시 데이터의 학습을 위해 주어지는 정답 데이터
지도 학습 중 분류의 경우에는 이 결정값을 레이블 또는 클래스로 지칭
분류(Classification)는 대표적인 지도학습(Supervised Learning) 방법의 하나입니다.
지도학습은 학습을 위한 다양한 피처와 분류 결정값인 레이블(Label) 데이터로 모델을 학습한 뒤, 별도의 테스트 데이터 세트에서 미지의 레이블을 예측합니다.
즉 지도학습은 명확한 정답이 주어진 데이터를 먼저 학습한 뒤 미지의 정답을 예측하는 방식입니다.
이 때 학습을 위해 주어진 데이터 세트를 학습 데이터 세트, 머신러닝 모델의 예측 성능을 평가하기 위해 별도로 주어진 데이터 세트를 테스트 데이터 세트로 지칭합니다.
사이킷런을 통해 첫 번째로 만들어볼 머신러닝 모델은 붓꽃 데이터 세트로 붓꽃의 품종을 분류(Classification) 하는 것입니다. 붓꽃 데이터 세트는 꽃잎의 길이와 너비, 꽃받침의 길이와 너비 피처(Feature)를 기반으로 꽃의 품종을 예측하기 위한것입니다.
# 사이킷런 버전 확인
import sklearn
print(sklearn.__version__)
0.19.1
붓꽃 예측을 위한 사이킷런 필요 모듈 로딩
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
데이터 세트를 로딩
import pandas as pd
# 붓꽃 데이터 세트를 로딩합니다.
iris = load_iris()
# iris.data는 Iris 데이터 세트에서 피처(feature)만으로 된 데이터를 numpy로 가지고 있습니다.
iris_data = iris.data
# iris.target은 붓꽃 데이터 세트에서 레이블(결정 값) 데이터를 numpy로 가지고 있습니다.
iris_label = iris.target
print('iris target값:', iris_label)
print('iris target명:', iris.target_names)
# 붓꽃 데이터 세트를 자세히 보기 위해 DataFrame으로 변환합니다.
iris_df = pd.DataFrame(data=iris_data, columns=iris.feature_names)
iris_df['label'] = iris.target
iris_df.head(3)
iris target값: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
iris target명: ['setosa' 'versicolor' 'virginica']
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | label | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
학습 데이터와 테스트 데이터 세트로 분리
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_label,
test_size=0.2, random_state=11)
학습 데이터 세트로 학습(Train) 수행
# DecisionTreeClassifier 객체 생성
dt_clf = DecisionTreeClassifier(random_state=11)
# 학습 수행
dt_clf.fit(X_train, y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=11,
splitter='best')
테스트 데이터 세트로 예측(Predict) 수행
# 학습이 완료된 DecisionTreeClassifier 객체에서 테스트 데이터 세트로 예측 수행.
pred = dt_clf.predict(X_test)
pred
array([2, 2, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0,
0, 1, 0, 0, 2, 1, 0, 1])
예측 정확도 평가
from sklearn.metrics import accuracy_score
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test,pred)))
예측 정확도: 0.9333