210706 FUNDAMENTAL 7. 배열(array)와 표(table)

시에나 Sienna·2021년 7월 6일
0

AIFFEL

목록 보기
6/66
post-custom-banner

평균은 n으로 나누고 분산, 표준편차는 n-1로 나누는 이유는?


1. 배열

1) 파이썬의 리스트

  • 동적배열(Dynamic Array)
  • 임의의 데이터 타입을 담을 수 있는 가변적 연속열(Sequence)형
  • list와 array의 장점을 모두 취한 형태
  • 자료구조상 linked list의 기능을 가지나, 실제로는 array로 구현

2) Array vs List

array :

  • 고유 식별자(index)와 그에 대흥하는 데이터 묶음
  • 연속된 메모리 영역에 순서대로 저장
  • 연속된 저장으로 인덱스 번호를 이용한 빠른 접근이 가능
    => 임의 접근(Random access)
  • element 유형을 지정하여 생성, 다른 타입 element 추가가 허용되지 않음
  • read : O(1), write/updatd/delete : O(n)

list:

  • 연속된 위치가 아닌 떨어진 영역에 저장
  • pointer가 다음 메모리의 위치를 가리킴
  • 1번 부터 n까지 다 거쳐서 들려야하는 순차접근 or Sequential access
  • 동적자료구조 : 데이터 크기 변형 가능, 추가/삭제가 편함
  • element 사이에 다른 타입의 자료형 허용
  • read : O(n), write/update/deletd : O(n)

3) Numpy

우분투에서 설치 확인방법 및 설치 명령아

 > conda list | grep numpy
 > pip install numpy
   # pip = package installer for python
 > import numpy as np
   

👀 알아두기 👀

> if__name__ == "__main__" 

이 파일을 실행시켰을 때, if문이 True가 되어야 if문 다음의 문장들이 수행됨
다른 파일에서 이 파일(모듈)을 불러서 사용할 때는 if문이 False가 되어 if문 다음의 문장이 수행되지 않음

① ndarry 만들기 : agrange(), array([])

> C = np.array([0,1,2,3,'4'])
  출력값 : ['0' '1' '2' '3' '4'] 
  😊 array의 성질(모든 element의 type 동일) 때문에 전체가 str로 바뀜

② 크기

  • ndarray.size : ndarray의 원소의 개수
  • ndarray.shape : ndarray의 행, 열 길이 = 행렬의 모양
  • ndarray.ndim : 행렬의 축(axis)의 개수 = n차원
  • .reshape() : 행렬의 모양을 바꿈, 바꾸기 전후의 size는 동일해야함.
    > A = np.arrage(10).reshape(2, 5) : 길이가 10인 1차원 행렬을 2x5 2차원 행렬로 바꿈   

③ type() & dtype()

  • type() : 행렬의 자료형 return

  • dtype() : Numpy ndarrary의 element의 데이터 타입을 return.

    	> D = np.array([0,1,2,3,[4,5],6])
              print(D) 		: 0 1 2 3 list([4, 5]) 6]
    	  print(D.dtype) 	: object  파이썬의 최상위 클래스. 
    	  print(type(D))	: <class 'numpy.ndarray'>	
    	∴ Numpy는 dtype을 object로 지정해서라도 행렬 내 dtype을 일치시킬 수 있게 됩니다.   

④ 특수행렬

특수 행렬

⑤ Broadcast 연산

  • 다른 모양의 배열을 처리하는 방법
  • 작업의 두 배열에 대한 후행 축의 크기가 동일 or 둘 중 하나가 하나
    특수 행렬
    특수 행렬
    특수 행렬특수 행렬특수 행렬 특수 행렬특수 행렬특수 행렬

⑥ 슬라이스와 인덱스

Numpy indexing Numpy indexing_practice

❓ A= [:2, 1:] : 열 0~1/ 행???? 해석이 어떻게 되는 거지??🤨

⑦ .random 패키지

  • np.random.random() : 0에서 1사이의 실수형 난수 하나를 생성
  • np.random.randint() : 0~9 사이 1개 정수형 난수 하나를 생성
  • np.random.choice() : ()에 주어진 값 중 하나를 랜덤하게 골라줍
  • np.random.permutation() : 원소의 순서를 임의로 출력
  • np.random.normal() : 정규분포 분포를 따르는 변수를 임의로 표본추출
  • np.random.uniform() : 균등분포 분포를 따르는 변수를 임의로 표본추출

⑧ 전치행렬

  • 행렬의 행과 열을 맞바꾸기, 행렬의 축을 서로 바꾸기
  • arr.T : 전차행렬
  • np.transpose : 행렬 축 변환

⑨ 기본 통계 데이터 계산

  • sum(), mean(), std(), median() : 중간값

2. 데이터의 행렬 변환(이미지)

  • 흑백 : 2차원 ndarray / 컬러 : 3차원 ndarray
  • 라이브러리 : matplotlib, PIL
  • 조작 메소드
    • open : Image.open() : 이미지 파일 open
    • size : Image.size : 이미지의 가로X세로 사이즈(픽셀???)
    • filename : Image.filename
    • crop : Image.crop((x0, y0, xt, yt)) : 이미지 자르기, 가로,세로 시작점, 가로세로 종료점 지정
    • resize : Image.resize((w,h))
    • save : Image.save() : 저장
    • .format : 이미지 파일 타입
    • .mode : 색상 정보

※ 참고자료 : NumPy 및 데이터 표현에 대한 시각적 소개

3. 구조화된 데이터

  • 데이터 내부에 자체적인 서브 구조를 가지는 데이터(table형태)
  • hash : key와 value로 구성된 자료구조

1) Dictionary

  1. 파이썬에서는 dictionary😆로 불림 dict() or {key:value}로 표현
  • .items() : 딕셔너리의 key와 value를 모두 return
  • 키를 가지고 값을 조회할 수 있음
    ex) Country_PhoneNumber = {'korea': 82, 'America': 1} Country_PhoneNumber['korea'] => 82 return
  1. 딕셔너리의 딕셔너리

ex) 이중 딕셔너리 호출
Quiz1Quiz2

2) Pandas

  • Series와 DataFrame 자료구조를 제공
  • 특징 :
    • NumPy기반에서 개발되어 NumPy를 사용하는 어플리케이션에서 쉽게 사용 가능
    • 축의 이름에 따라 데이터를 정렬할 수 있는 자료 구조
    • 다양한 방식으로 인덱스(index)하여 데이터를 다룰 수 있는 기능
    • 통합된 시계열 기능 & 통합 자료 구조
      • 통합 자료 구조 : 시계열 데이터와 비시계열 데이터를 함께 다룸
    • 누락된 데이터 처리 기능
    • 데이터베이스처럼 데이터를 합치고 관계연산을 수행하는 기능
      	> pip install pandas

(1) Series

  • 1차원 배열과 비슷한 자료구조
  • 리스트, 튜플 or NumPy 자료형으로도 만들 수 있음
    Series호출
  • .values : array 형태로 호출
  • .index : RangeIndex 반환 = 정수형 인덱스
    .values.index
  • 인덱스 설정 방법
   ① ser2 = pd.Series(['a', 'b', 'c', 3], index=['i','j','k','h'])
   ② ser2.index = ['Jhon', 'Steve', 'Jack', 'Bob']
     >> ser2.index 실행하면 RangeIndex -> Index 타입 객체가 표시됨
  • 딕셔너리를 사용하면 Series에서는 딕셔너리의 키가 인덱스로 설정됨
    • Series : index, value(2개의 Column) vs 딕셔너리 : key, value(2개의 Column)
      딕셔너리로호출
  • 값이 할당된 인덱스에서는 딕셔너리와 유사하여 슬라이싱 기능을 지원
    슬라이싱
  • .name : Series 객체의 이름을 설정
  • .index.name : 인덱스 이름 설정 = column 이름

(2) DataFrame

SeriesvsDataFrame1
SeriesvsDataFrame2
SeriesvsDataFrame2

⭐️Dictionary vs Series vs Dataframe⭐️

(3) EDA(Exploratory Data Analysis)

  • 통계데이터를 활용해서 데이터의 대푯값과 분산을 구하는 것
    	> mkdir p ~/aiffel/data_represent/data
    	> ln -s ~/data/covid19_italy_region.csv ~/aiffel/data_represent/data
  1. csv 파일 읽기
    SeriesvsDataFrame2

  2. pandas 통계 관련 메소드

  • .head(), .tail() : 첫 5개행, 마지막 5개행 보여줌
  • .columns : 데이터셋에 존재하는 컬럼명 return
  • .info() : column별 Null값과 자료형을 return
  • .drop() : 특정 컬럼 삭제
  • .isnull().sum() : 결측값(Missing value) 확인 및 갯수 총합
  • .value_counts() : 범주형 data column별로 값이 몇개 있는지 확인
  • .count(): NA를 제외한 수를 반환
  • .describe(): 요약통계를 계산
  • .min(), .max(): 최소, 최댓값
  • .sum(): 합을 계산합니다.
  • .mean(): 평균을 계산합니다.
  • .median(): 중앙값을 계산합니다.
  • .var(): 분산을 계산합니다.
  • .std(): 표준편차를 계산합니다.
  • .corr() : 2개의 인자의 상관계수(-1 <= r <= 1)
  • .argmin(), .argmax(): 최소, 최댓값을 가지고 있는 값을 반환 합니다.
  • .idxmin(), .idxmax(): 최소, 최댓값을 가지고 있는 인덱스를 반환합니다.
  • .cumsum(): 누적 합을 계산합니다.
  • .pct_change(): 퍼센트 변화율을 계산합니다.

참고자료 : pandas 주요기능

post-custom-banner

0개의 댓글