앙상블 개요
![](https://velog.velcdn.com/images/tim0902/post/6c9b8814-874e-49cd-b0a9-cb78e172f667/image.png)
보팅
![](https://velog.velcdn.com/images/tim0902/post/eb45a8ba-dfdd-437f-ba81-daa7dd98fa1a/image.png)
bagging
![](https://velog.velcdn.com/images/tim0902/post/f808801e-2e06-4658-9add-dd5218f0754e/image.png)
![](https://velog.velcdn.com/images/tim0902/post/c2eca43a-8df0-4dcb-bf58-501e6c96bdc9/image.png)
최종 결정에서 하드보팅
![](https://velog.velcdn.com/images/tim0902/post/b8e3e3d5-c254-4e11-a532-c19cd949887e/image.png)
최종 결정에서 소프트보팅
![](https://velog.velcdn.com/images/tim0902/post/54731ed2-726e-4f05-a6b5-fbf204015de7/image.png)
랜덤 포레스트
![](https://velog.velcdn.com/images/tim0902/post/ec29242b-b9c7-463f-915e-843b47a3a416/image.png)
![](https://velog.velcdn.com/images/tim0902/post/034facf3-078b-417e-b6f0-d1721d31eb42/image.png)
HAR
- Human Activity Recognition
IMU 센서를 활용해서 사람의 행동을 인식하는 실험
![](https://velog.velcdn.com/images/tim0902/post/9be026b3-f90a-4225-b611-6187a7900d2e/image.png)
폰에 있는 가속도/자이로 센서 사용
![](https://velog.velcdn.com/images/tim0902/post/0c189972-7116-445c-83ec-bed3ab0a270d/image.png)
데이터의 공식 경로
![](https://velog.velcdn.com/images/tim0902/post/43c20427-4071-4d0a-b848-c9f0617e96c6/image.png)
데이터 소개
![](https://velog.velcdn.com/images/tim0902/post/a810959c-cc78-4aa8-9cee-4037d9aaa26f/image.png)
데이터의 특송
![](https://velog.velcdn.com/images/tim0902/post/99e50839-ebd0-45d2-8631-5303f5ad15fc/image.png)
데이터의 클래스
![](https://velog.velcdn.com/images/tim0902/post/479c94c7-b97a-4f5f-b771-31183263b568/image.png)
![](https://velog.velcdn.com/images/tim0902/post/7784803d-feae-422a-892d-9d046abcefcf/image.png)
![](https://velog.velcdn.com/images/tim0902/post/44289b01-bf24-444c-94ea-13160190f7da/image.png)
![](https://velog.velcdn.com/images/tim0902/post/40b7e61b-5b6a-4efa-8b08-f56172bc98e8/image.png)
![](https://velog.velcdn.com/images/tim0902/post/dbe9c22d-59e8-4e55-9c4e-a5f5f9dad071/image.png)
시간영역의 데이터를 직접 사용하는 것은 어렵다
![](https://velog.velcdn.com/images/tim0902/post/b89b3002-f83f-4153-a909-34a69e2cb112/image.png)
머신러닝을 이용한 행동 인식 연구의 역사
![](https://velog.velcdn.com/images/tim0902/post/f18daaf8-5008-4362-86c9-07a394f2bdce/image.png)
데이터 읽기
![](https://velog.velcdn.com/images/tim0902/post/f8aadd04-f9a4-4f0c-8dc6-074777d31c43/image.png)
특성 확인
![](https://velog.velcdn.com/images/tim0902/post/456a6f58-ec2e-437a-9eb8-373fc7c92bc4/image.png)
![](https://velog.velcdn.com/images/tim0902/post/c9645e2b-cbc6-4ae5-8710-aee5a3e21fcd/image.png)
X data
![](https://velog.velcdn.com/images/tim0902/post/54608665-6e87-43de-9c64-589580b3e963/image.png)
![](https://velog.velcdn.com/images/tim0902/post/85555e54-ea2b-43cd-9a36-b5df3352c8da/image.png)
Y data
![](https://velog.velcdn.com/images/tim0902/post/8dd977b2-d82d-4112-a12d-ed727a6a5fe3/image.png)
각 액션별 데이터의 수
![](https://velog.velcdn.com/images/tim0902/post/f3624e74-9f6c-4838-84f0-51791b48d200/image.png)
각 라벨별 정의
![](https://velog.velcdn.com/images/tim0902/post/8b465373-cdb2-4bd2-9652-c3114982102e/image.png)
결정나무
![](https://velog.velcdn.com/images/tim0902/post/f2664be6-0c6d-4dfd-8d31-fa16f39d2296/image.png)
max_depth를 다양하게 하기 위해 GridSearchCV 이용
![](https://velog.velcdn.com/images/tim0902/post/f9a6253e-9c5d-4e24-9b59-491ce221e224/image.png)
max_depth 8이 좋다고 함
![](https://velog.velcdn.com/images/tim0902/post/589b838c-7ee4-4ae3-854d-54bc7aa40adf/image.png)
max_depth별로 표로 선능을 정리
![](https://velog.velcdn.com/images/tim0902/post/c213caab-eb1e-4d32-82a9-730d2c5bf287/image.png)
실제 test 데이터에서의 결과
![](https://velog.velcdn.com/images/tim0902/post/a7b5a0f2-71c5-4492-b8a9-4e6070998cfe/image.png)
베스트 모델의 결과
![](https://velog.velcdn.com/images/tim0902/post/25485115-1dae-495f-962d-7416e728cc20/image.png)
램덤 포레스트 적용
![](https://velog.velcdn.com/images/tim0902/post/a70467db-ef5a-4a84-9e4c-8b996482660e/image.png)
결과 정리를 위한 작업
![](https://velog.velcdn.com/images/tim0902/post/b1696ddf-f517-4321-acca-d76fcef3bf1e/image.png)
성능이 좋음
![](https://velog.velcdn.com/images/tim0902/post/8dc26024-7262-4c70-af6c-5881e437bfbd/image.png)
best 모델
![](https://velog.velcdn.com/images/tim0902/post/7d2ce222-c8ca-4de4-b839-b0e9ff948749/image.png)
test 데이터에 적용
![](https://velog.velcdn.com/images/tim0902/post/278d6c3d-1d8b-46d8-b5d1-8eb5597ed79e/image.png)
중요 특성 확인
![](https://velog.velcdn.com/images/tim0902/post/94fcacf3-a2b3-4f47-9c17-be120828af05/image.png)
각 특성들의 중요도가 개별적으로 높지 않다
![](https://velog.velcdn.com/images/tim0902/post/3a57029e-7ddb-4a23-9ec4-e5fc077e3e0f/image.png)
주요 특성 관찰
![](https://velog.velcdn.com/images/tim0902/post/11df9e4b-4685-4b29-a28b-3dc47056a187/image.png)
주요 20개 특성
![](https://velog.velcdn.com/images/tim0902/post/5d749053-0424-4771-a7c0-a9653dff1298/image.png)
20개 특성만 가지고 다시 성능 확인
- 561개의 특성보다 20개의 특성만 보면 연산속도가 정말 빠를 것이다. 비록 acc는 포기하더라도 !
![](https://velog.velcdn.com/images/tim0902/post/dc8783bf-141e-4106-9420-1801d897368f/image.png)