A non-empty array A consisting of N integers is given.
A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
is a permutation, but array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
is not a permutation, because value 2 is missing.
The goal is to check whether array A is a permutation.
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A, returns 1 if array A is a permutation and 0 if it is not.
For example, given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
the function should return 1.
Given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
the function should return 0.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [1..1,000,000,000].
Set을 활용해서 중복 값을 포함하는지 검사했다. 흠 근데 찝찝하다 굳이 이렇게 풀 필요는 없을 것 같았다.
import java.util.HashSet;
import java.util.Set;
class Solution {
public int solution(int[] A) {
boolean isPermutation = false;
boolean isDistinctValueExisted = false;
Set permutation = new HashSet();
int maxLength = 0;
for(int i: A) {
if (maxLength < i) {
maxLength = i;
}
if (permutation.contains(i)) {
isDistinctValueExisted = true;
break;
} else {
permutation.add(i);
}
}
if (permutation.size() == maxLength && !isDistinctValueExisted) {
isPermutation = true;
}
return isPermutation ? 1 : 0;
}
}
정열을 시키고 숫자를 1증가 시켜 비교하였다. 순열이 나오면 정렬하는걸 잊지 말아야겠다.
public int solution(int[] A) {
int len = A.length;
Arrays.sort(A);
for(int i = 0; i < len; i++){
if(A[i] != i+1){
return 0;
}
}
return 1;
}