paper link : https://arxiv.org/abs/2307.02253

This paper investigates different methods and various neural network architectures applicable in the time series classification domain. The data is obtained from a fleet of gas sensors that measure and track quantities such as oxygen and sound. With the help of this data, we can detect events such as occupancy in a specific environment.
At first, we analyze the time series data to understand the effect of different parameters, such as the sequence length, when training our models. These models employ Fully Convolutional Networks (FCN) and Long Short-Term Memory (LSTM) for supervised learning and Recurrent Autoencoders for semi supervised learning.
Throughout this study, we spot the differences between these methods based on metrics such as precision and recall identifying which technique best suits this problem.
This paper investigates different methods and various neural network architectures applicable in the time series classification domain.
-> 이 논문은 다른 방법들과 다양한 뉴럴 네트워크 구조의 응용을 조사했다. 시계열 분류 분야에서
The data is obtained from a fleet of gas sensors that measure and track quantities such as oxygen and sound.
-> 데이터는 가스 센서의 함대를 포함한다. 산소와 소리와 같은것의 양을 측정하고 추적한
With the help of this data, we can detect events such as occupancy in a specific environment.
-> 이 데이터의 도움으로, 우리는 특정 환경에서의 점유율과 같은 이벤트를 탐지할 수 있다.
At first, we analyze the time series data to understand the effect of different parameters, such as the sequence length, when training our models.
-> 첫 번째로, 우리는 시계열 데이터를 분석했다. 다른 파라미터의 효과를 이해하기 위해. 시퀀스 길이와 같은, 우리 모델을 학습 할 때
These models employ Fully Convolutional Networks (FCN) and Long Short-Term Memory (LSTM) for supervised learning and Recurrent Autoencoders for semi supervised learning.
-> 이 모델은 fully convolutional networks와 LSTM을 사용한다. 그리고 지도학습과 자기회귀 오토인코더를 사용한다. 준지도 학습에서
Throughout this study, we spot the differences between these methods based on metrics such as precision and recall identifying which technique best suits this problem.
-> 이 연구를 통해서, 우리는 recall과 precision과 같은 평가방법을 기반으로 이 방법 사이의 차이를 탐지했다. 그리고 이 문제에 가장 적합한 기술이 무엇인지 확인하기 위해