COCO Dataset은 MS에서 제작한 Image classification이나 object detection에서 많이 사용된다.
데이터는
https://cocodataset.org/#home
에서 다운받을 수 있다.
ID | object(paper) | object(2014) | object(2017) | super category |
---|---|---|---|---|
1 | person | person | person | person |
2 | bicycle | bicycle | bicycle | vehicle |
3 | car | car | car | vehicle |
4 | motorcycle | motorcycle | motorcycle | vehicle |
5 | airplane | airplane | airplane | vehicle |
6 | bus | bus | bus | vehicle |
7 | train | train | train | vehicle |
8 | truck | truck | truck | vehicle |
9 | boat | boat | boat | vehicle |
10 | traffic light | traffic light | traffic light | outdoor |
11 | fire hydrant | fire hydrant | fire hydrant | outdoor |
12 | street sign | - | - | outdoor |
13 | stop sign | stop sign | stop sign | outdoor |
14 | parking meter | parking meter | parking meter | outdoor |
15 | bench | bench | bench | outdoor |
16 | bird | bird | bird | animal |
17 | cat | cat | cat | animal |
18 | dog | dog | dog | animal |
19 | horse | horse | horse | animal |
20 | sheep | sheep | sheep | animal |
21 | cow | cow | cow | animal |
22 | elephant | elephant | elephant | animal |
23 | bear | bear | bear | animal |
24 | zebra | zebra | zebra | animal |
25 | giraffe | giraffe | giraffe | animal |
26 | hat | - | - | accessory |
27 | backpack | backpack | backpack | accessory |
28 | umbrella | umbrella | umbrella | accessory |
29 | shoe | - | - | accessory |
30 | eye glasses | - | - | accessory |
31 | handbag | handbag | handbag | accessory |
32 | tie | tie | tie | accessory |
33 | suitcase | suitcase | suitcase | accessory |
34 | frisbee | frisbee | frisbee | sports |
35 | skis | skis | skis | sports |
36 | snowboard | snowboard | snowboard | sports |
37 | sports ball | sports ball | sports ball | sports |
38 | kite | kite | kite | sports |
39 | baseball bat | baseball bat | baseball bat | sports |
40 | baseball glove | baseball glove | baseball glove | sports |
41 | skateboard | skateboard | skateboard | sports |
42 | surfboard | surfboard | surfboard | sports |
43 | tennis racket | tennis racket | tennis racket | sports |
44 | bottle | bottle | bottle | kitchen |
45 | plate | - | - | kitchen |
46 | wine glass | wine glass | wine glass | kitchen |
47 | cup | cup | cup | kitchen |
48 | fork | fork | fork | kitchen |
49 | knife | knife | knife | kitchen |
50 | spoon | spoon | spoon | kitchen |
51 | bowl | bowl | bowl | kitchen |
52 | banana | banana | banana | food |
53 | apple | apple | apple | food |
54 | sandwich | sandwich | sandwich | food |
55 | orange | orange | orange | food |
56 | broccoli | broccoli | broccoli | food |
57 | carrot | carrot | carrot | food |
58 | hot dog | hot dog | hot dog | food |
59 | pizza | pizza | pizza | food |
60 | donut | donut | donut | food |
61 | cake | cake | cake | food |
62 | chair | chair | chair | furniture |
63 | couch | couch | couch | furniture |
64 | potted plant | potted plant | potted plant | furniture |
65 | bed | bed | bed | furniture |
66 | mirror | - | - | furniture |
67 | dining table | dining table | dining table | furniture |
68 | window | - | - | furniture |
69 | desk | - | - | furniture |
70 | toilet | toilet | toilet | furniture |
71 | door | - | - | furniture |
72 | tv | tv | tv | electronic |
73 | laptop | laptop | laptop | electronic |
74 | mouse | mouse | mouse | electronic |
75 | remote | remote | remote | electronic |
76 | keyboard | keyboard | keyboard | electronic |
77 | cell phone | cell phone | cell phone | electronic |
78 | microwave | microwave | microwave | appliance |
79 | oven | oven | oven | appliance |
80 | toaster | toaster | toaster | appliance |
81 | sink | sink | sink | appliance |
82 | refrigerator | refrigerator | refrigerator | appliance |
83 | blender | - | - | appliance |
84 | book | book | book | indoor |
85 | clock | clock | clock | indoor |
86 | vase | vase | vase | indoor |
87 | scissors | scissors | scissors | indoor |
88 | teddy bear | teddy bear | teddy bear | indoor |
89 | hair drier | hair drier | hair drier | indoor |
90 | toothbrush | toothbrush | toothbrush | indoor |
91 | hair brush | - | - | indoor |
참고
COCO2017의 train dataset은 COCO2014의 trainval dataset과 같고,
COCO2017 val dataset은 COCO2014 minival dataset과 같다.
누락된 클래스 (11개) |
---|
stop sign |
hat |
shoe |
eye glasses |
plate |
mirror |
window |
desk |
door |
blender |
hair brush |
또한 참고로 COCO 주석인 json 파일에서 stop sign 에 대한 주석이 빠지면서 생긴 문제인지
train, val이 영상 데이터와 annotation 데이터의 개수에 차이가있다.
Data type | Number of data |
---|---|
Train2017 | 118,287 |
Annotation of train2017 | 117,266 |
Val2017 | 5,000 |
Annotation of val2017 | 4,952 |