https://www.bradyneal.com/causal-inference-course
Introduction to Causal Inference라는 강의를 듣고 정리했습니다.
9. Difference-in-Difference
9-1. Motivation and Preliminaries
Average Treatment Effect on the Treated (ATT)


9-2. Difference-in-Differences Overview
Introducing Time

- without time을 계산할 때는 unconfoundedness(Y(0)⊥T)를 가정

Tolerates Time-Invariant Unobserved Confounding
unobserved confounder가 constant하면 괜찮다.

9-3. Assumptions and Proof
Consistency Assumption Extended to Time

- Observed value of outcome = potential outcome in time τ if getting treatment t

Parallel Trends Assumption
- treatment group과 control group의 변화량의 기울기가 평행하다.

No Pretreatment Effect

E[Y0(0)∣T=1] 을 알기 위해
Assumptions Change

DID 증명

9-4. Problems with Difference-in-Differences
Violations of Parallel Trends

Treatment and time 사이의 interaction이 있으면 violation이 생김
Parallel Trends is Scale-Specific
log scale일 때는 parallel 안 됨
The parallel trends assumptions isn’t nonparametric