프로세스 : 프로그램을 메모리 상에서 실행중인 작업
스레드 : 프로세스 안에서 실행되는 여러 흐름 단위
기본적으로 프로세스마다 최소 1개의 스레드 소유 (메인 스레드 포함)

스레드는 프로세스의 코드에 정의된 절차에 따라 실행되는 특정한 수행 경로다.

프로세스가 메모리에 올라갈 때 운영체제로부터 시스템 자원을 할당받는다. 이 때 운영체제는 프로세스마다 각각 독립된 메모리 영역을, Code/Data/Stack/Heap의 형식으로 할당해 준다. 각각 독립된 메모리 영역을 할당해 주기 때문에 프로세스는 다른 프로세스의 변수나 자료에 접근할 수 없다.
Code : 코드 자체를 구성하는 메모리 영역(프로그램 명령)
Data : 전역변수, 정적변수, 배열 등
초기화 된 데이터는 data 영역에 저장
초기화 되지 않은 데이터는 bss 영역에 저장
Heap : 동적 할당 시 사용 (new(), malloc() 등)
Stack : 지역변수, 매개변수, 리턴 값 (임시 메모리 영역)

이와 다르게 스레드는 메모리를 서로 공유할 수 있다. 이에 대해 더 자세히 설명하자면, 프로세스가 할당받은 메모리 영역 내에서 Stack 형식으로 할당된 메모리 영역은 따로 할당받고, 나머지 Code/Data/Heap 형식으로 할당된 메모리 영역을 공유한다. 따라서 각각의 스레드는 별도의 스택을 가지고 있지만 힙 메모리는 서로 읽고 쓸 수 있게 된다.
Stack 영역만 따로 할당 받는 이유
프로세스는 자신만의 고유 공간과 자원을 할당받아 사용하는데 반해, 스레드는 다른 스레드와 공간, 자원을 공유하면서 사용하는 차이가 존재한다.
여기서 프로세스와 스레드의 중요한 차이를 하나 더 알 수 있게 된다. 만약 한 프로세스를 실행하다가 오류가 발생해서 프로세스가 강제로 종료된다면, 다른 프로세스에게 어떤 영향이 있을까? 공유하고 있는 파일을 손상시키는 경우가 아니라면 아무런 영향을 주지 않는다.
그런데 스레드의 경우는 다르다. 스레드는 Code/Data/Heap 메모리 영역의 내용을 공유하기 때문에 어떤 스레드 하나에서 오류가 발생한다면 같은 프로세스 내의 다른 스레드 모두가 강제로 종료된다.
본문에서 언급했듯 스레드를 코드(프로세스) 내에서의 함수(스레드)에 빗대어 표현해보면 이해하기 훨씬 쉬워진다. 코딩을 해 본 경험이 있다면, 코드 내 어떤 함수 하나에서 Segmentation Fault 등의 오류가 발생한 경험이 있을 것이다. 이 오류가 어떤 함수에서 발생했든 간에 해당 코드는 다른 함수 모두에 대한 작업을 중단하고 프로세스 실행을 끝내버린다.
왜 이런 방식으로 메모리를 공유할까?
스레드는 본문 맨 위에서 "흐름의 단위"라고 말했는데, 정확히는 CPU 입장에서의 최소 작업 단위가 된다. CPU는 작업을 처리할 때 스레드를 최소 단위로 삼고 작업을 한다. 반면 운영체제는 이렇게 작은 단위까지 직접 작업하지 않기 때문에 운영체제 관점에서는 프로세스가 최소 작업 단위가 된다.
여기서 중요한 점은 하나의 프로세스는 하나 이상의 스레드를 가진다는 점이다. 따라서 운영체제 관점에서는 프로세스가 최소 작업 단위인데, 이 때문에 같은 프로세스 소속의 스레드끼리 메모리를 공유하지 않을 수 없다.
하나의 프로그램을 여러개의 프로세스로 구성하여 각 프로세스가 병렬적으로 작업을 수행하는 것
장점 : 안전성 (메모리 침범 문제를 OS 차원에서 해결)
단점 : 각각 독립된 메모리 영역을 갖고 있어, 작업량 많을 수록 오버헤드 발생. Context Switching으로 인한 성능 저하
Context Switching이란?
프로세스의 상태 정보를 저장하고 복원하는 일련의 과정
즉, 동작 중인 프로세스가 대기하면서 해당 프로세스의 상태를 보관하고, 대기하고 있던 다음 순번의 프로세스가 동작하면서 이전에 보관했던 프로세스 상태를 복구하는 과정을 말함
→ 프로세스는 각 독립된 메모리 영역을 할당받아 사용되므로, 캐시 메모리 초기화와 같은 무거운 작업이 진행되었을 때 오버헤드가 발생할 문제가 존재함
하나의 응용 프로그램에서 여러 스레드를 구성해 각 스레드가 하나의 작업을 처리하는 것
스레드들이 공유 메모리를 통해 다수의 작업을 동시에 처리하도록 해줌
장점
1. Context-Switching할 때 공유하고 있는 메모리만큼의 메모리 자원을 아낄 수 있다.
2. 스레드는 프로세스 내의 Stack 영역을 제외한 모든 메모리를 공유하기 때문에 통신의 부담이 적어서 응답 시간이 빠르다.
단점
1. 스레드 하나가 프로세스 내 자원을 망쳐버린다면 모든 프로세스가 종료될 수 있다.
2. 자원을 공유하기 때문에 필연적으로 동기화 문제가 발생할 수밖에 없다.
이처럼 여러 스레드가 함께 전역 변수를 사용할 경우 발생할 수 있는 충돌을 동기화 문제라고 한다. 스케줄링은 운영체제가 자동으로 해주지 않기 때문에 프로그래머가 적절한 기법을 직접 구현해야 하므로 프로그래밍할 때 멀티스레드를 사용하려면 신중해야 한다. 디버깅 과정도 까다로워지기 때문이다.
하나의 스레드가 공유 데이터 값을 변경하는 시점에 다른 스레드가 그 값을 읽으려할 때 발생하는 문제를 해결하기 위한 동기화 과정
상호 배제, 진행, 한정된 대기를 충족해야함
정말 다른 프로세스의 정보에는 접근할 수 없을까?
사실 프로세스가 다른 프로세스의 정보에 접근하는 것이 가능하다. 지금 우리네가 사용하는 대부분의 컴퓨터 프로그램을 생각해 보면 다른 프로그램에 있는 정보를 가져오는 경우는 심심치 않게 볼 수 있다.
프로세스 간 정보를 공유하는 방법에는 다음과 같은 방법들이 있다. 다만 이 경우에는 단순히 CPU 레지스터 교체뿐만이 아니라 RAM과 CPU 사이의 캐시 메모리까지 초기화되기 때문에 앞서 말했듯 자원 부담이 크다.
프로세스와 스레드는 개념의 범위부터 다르다. 스레드는 프로세스 안에 포함되어 있기 때문이다.
운영체제가 프로세스에게 Code/Data/Stack/Heap 메모리 영역을 할당해 주고 최소 작업 단위로 삼는 반면, 스레드는 프로세스 내에서 Stack 메모리 영역을 제외한 다른 메모리 영역을 같은 프로세스 내 다른 스레드와 공유한다.
프로세스는 다른 프로세스와 정보를 공유하려면 IPC를 사용하는 등의 번거로운 과정을 거쳐야 하지만, 스레드는 기본 구조 자체가 메모리를 공유하는 구조이기 때문에 다른 스레드와 정보 공유가 쉽다. 때문에 멀티태스킹보다 멀티스레드가 자원을 아낄 수 있게 된다. 다만 스레드의 스케줄링은 운영체제가 처리하지 않기 때문에 프로그래머가 직접 동기화 문제에 대응할 수 있어야 한다.
프로그램과 프로세스의 차이에 대해 설명해주세요.
프로세스와 스레드의 차이점에 대해 설명해주세요.
프로세스의 문제점에 대해 설명해주세요.
스레드의 출현 목적에 대해 설명해주세요.
메모리 영역에 대해 설명해주세요.

동시성은 멀티 작업을 위해 싱글 코어에서 여러 개의 스레드가 번갈아 실행하는 것을 말합니다.
(동시에 실행하는 것처럼 보이지만 사실은 번갈아가며 실행하고 있는 것임)
병렬성은 멀티 작업을 위해 멀티 코어에서 한 개 이상의 쓰레드를 포함하는 각 코어들을 동시에 실행하는 것을 말합니다.